自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(4)
  • 收藏
  • 关注

原创 转置卷积到FCN

我们可以看到如果步幅为s,填充为s/2(假设s/2是整数)且卷积核的高和宽为2s,转置卷积核会将输入的高和宽分别放大s倍。现在介绍一下FCN,这个网络相比之下比较简单,会给人一种,你来你也行的感觉,但这个网络15年确实在语义分割方面有很好的效果,为之后奠定了基础。网络架构:图片经过一个卷积神经网络的处理,然后是一个1×1的卷积层,之后是一个转置卷积层,最后便可以实现像素级别的分割。最后来训练一下,效果可以达到0.86左右,原论文中一开始的网络选用的不是resnet18,而是VGG16,可以参考原论文。

2024-01-19 15:45:24 446 1

原创 SSD的实现

第一个函数是用于高宽减半,第二个是基础网络,这里采用的是三个down_sample_blk函数,也可以用残差神经网络等等都可以,这里是为了方便。规定损失和评价函数,cls用的交叉信息熵的损失,bbox用的L1损失,返回的是cls+bbox,也可以给他们加上一个权重。第一个是种类的预测,输出的通道是锚框数×(种类数+1),加1的原因是还有一个背景,就是不属于任何类。第二个是边缘框的预测,期预测需要两个坐标,四个数,所以输出的通道数是锚框数×4。采用的是3×3的卷积块,1填充,这样可以使高宽不变。

2024-01-17 19:36:39 669

原创 优化算法之梯度下降法

代价函数越小,则可以代表我们拟合出来的方程距离真实值最近;代价函数中分母有一个2,是为了,求偏导的时候前面没有系数.我们需要设置一个迭代次数和学习率,这两个值要根据不同的情景居中设置,是一种很好的数值优化算法。由多元微分求导可知梯度所在的方向即为函数值下降最快的方向。4.开始多次迭代并每隔十次弄一个图像。1.先把所需要的库和数据导入。2.对数据进行初始化。

2023-07-25 15:49:38 101

原创 机器学习之线性模型

本文章是对周志华机器学习在学习过程中的笔记以及理解。

2023-07-24 16:48:17 534 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除