1. Caffe
LeNet→神经网经
Caffe的优点是简洁、快速,缺点是缺少灵活性。Caffe灵活性的缺失主要是因为它的设计缺陷。在Caffe 中最主要的抽象对象是层,每实现一个新的层,必须要利用C++实现它的前的传播和反向传播代码;而如果想要新的层运行在GPU上,还需要同时利用CUDA实现这一层的前向传播和反向传播。这种限制使得不熟悉C++和CUDA的用户扩展Caffe十分困难。
Caffe 凭借其易用性、简洁明了的源码、出众的性能和快速的原型设计获取了众多用户,曾经占据深度学习领域的“半壁江山”。但是在“深度学习新时代”到来之时,Caffe已经表现出应用局限等。明显的力不从心,诸多问题逐渐显现,包括灵活性缺失、扩展难、依赖众多环境且难以配置尽管现在在GitHub上还能找到许多基于Caffe的项目,但是新的Caffe的项目己经越来越少。
Caffe的作者从加州大学伯克利分校毕业后加入了Google公司,参与过TensorFlow 的开发后来离开Google公司加入FAIR公司,担任工程主管,并开发了Caffe2。Caffe2是一个兼具表现力、速度和模块性的开源深度学习框架。它沿袭了大量的Caffe设计,可解决多年来在Caffe的使用和部署中发现的瓶颈问题。Caffe2的设计追求轻量级,在保有扩展性和高性能的同时,Caffe2 也强调了便携性。Caffe2从一开始就以性能、扩展、移动端部署作为主要设计目标。Caffe2的核心 C++库能提供高速和便携性,而其Python 和 C++API 使用户可以轻松地在Linux、Windows、iOS、Android,甚至Raspb