bellman-ford可以用来计算加权图中的从源点到其他所有顶点的最短路径,并检测图中是否有负权回路。
以下为实现代码:
class Graph:
def __init__(self,vertices) -> None:
self.V = vertices #顶点数
self.edges =[] #边列数
def add_edge(self, u , v, w):
self.edges.append ((u,v,w))#添一条边(u,v)权重为w
def bellman_ford(self,src):
#初始化距离数组,所有距离设为无穷大,源点距离设为0
dist = [float('inf')]* self.V
dist[src] = 0
#进行v-1次迭代
for _ in range(self.V - 1 ):
for u,v,w in self.edges:
if dist[u] !=float ('inf') and dist[u]+ w <dist[v]:
dist[v] =dist[u]+w
#检测负权回路
for u ,v ,w in self.edges:
if dist[u] !=float('inf') and dist[u] + w <dist[v]:
print("图中包含负权回路")
return
self.print_solution(dist)
def print_solution(self,dist):
print("顶点距离源点的最短距离:")
for i in range(self.V):
print(f"顶点{i}:{dist[i]}")
g=Graph(5)
g.add_edge(0,1,-1)
g.add_edge(0,2,4)
g.add_edge(1,2,3)
g.add_edge(1,3,2)
g.add_edge(1,4,2)
g.add_edge(3,2,5)
g.add_edge(3,1,1)
g.add_edge(4,3,-3)
g.bellman_ford(0)