爬楼梯问题:斐波那契数列的巧妙应用

爬楼梯问题是一个经典的动态规划问题。给定一个楼梯,总共有 n 阶台阶,每次可以爬 1 阶或 2 阶,要求计算有多少种不同的方法可以爬到楼顶。通过观察小规模的例子,可以发现爬楼梯的方法数遵循斐波那契数列的规律。

算法分析

要到达第 n 阶台阶,最后一步有两种选择:

  1. 从第 n-1 阶爬 1 阶上来。
  2. 从第 n-2 阶爬 2 阶上来。

因此,到达第 n 阶的总方法数是这两者的和:

f(n) = f(n-1) + f(n-2)

这与斐波那契数列的递推关系一致。初始条件为:

  • f(1) = 1
  • f(2) = 2

基于以上观察,可以使用动态规划的方法高效地计算出结果。

Java实现
public class Solution {
    public int climbStairs(int n) {
        if (n == 1) {
            return 1;
        }
        int a = 1, b = 2;
        for (int i = 3; i <= n; i++) {
            int temp = b;
            b = a + b;
            a = temp;
        }
        return b;
    }
}
代码解释
  1. 初始条件处理
    • 如果 n == 1,直接返回 1,因为只有一种方法爬到第 1 阶。
  2. 变量初始化
    • a 初始化为 f(1) = 1
    • b 初始化为 f(2) = 2
  3. 循环计算
    • 从 i = 3 到 i = n,计算 f(i) = f(i-1) + f(i-2)
    • 使用临时变量 temp 来更新 a 和 b 的值,避免覆盖。
  4. 返回结果
    • 循环结束后,b 中存储的是 f(n) 的值,直接返回 b
复杂度分析
  • 时间复杂度:O(n),因为需要进行 n - 2 次循环。
  • 空间复杂度:O(1),只使用了常数个额外空间(变量 a 和 b)。

这次设计依旧是速度取胜,内存消耗大。同时我们可以知道的是,完成算法问题,需要我们具有一定的数学知识。例如这次的爬楼梯问题,如果不知道斐波那契数列,那么我们可以会从其他方面进行算法设计,就可能会耗费更多的时间精力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值