高效找多数:摩尔投票算法详解

这个问题要求我们在一个非空数组中找到多数元素,即出现次数大于 ⌊n/2⌋ 的元素。我们可以利用摩尔投票算法(Boyer-Moore Voting Algorithm)来解决这个问题,该算法高效且仅使用常量额外空间。

算法思路

  1. 初始化候选元素和计数器:选择数组的第一个元素作为候选多数元素,计数器初始化为1。
  2. 遍历数组
    • 如果当前元素与候选元素相同,计数器加1。
    • 如果当前元素与候选元素不同,计数器减1。
    • 如果计数器减到0,更换候选元素为当前元素,并将计数器重置为1。
  3. 返回候选元素:由于题目保证数组中总是存在多数元素,遍历结束后,候选元素即为多数元素。

Java实现

public class Solution {
    public int majorityElement(int[] nums) {
        int candidate = nums[0];
        int count = 1;
        for (int i = 1; i < nums.length; i++) {
            if (count == 0) {
                candidate = nums[i];
                count = 1;
            } else if (nums[i] == candidate) {
                count++;
            } else {
                count--;
            }
        }
        return candidate;
    }
}

代码解释

  • 初始化:将数组的第一个元素设为候选多数元素candidate,计数器count初始化为1。
  • 遍历数组
    • 如果count为0,表示当前候选元素不可能是多数元素,更换候选元素为当前元素,并重置count为1。
    • 如果当前元素与候选元素相同,count加1。
    • 如果当前元素与候选元素不同,count减1。
  • 返回结果:遍历结束后,candidate即为多数元素。

复杂度分析

  • 时间复杂度:O(n),只需遍历数组一次。
  • 空间复杂度:O(1),只使用了常数个额外变量。

通过摩尔投票算法,我们可以在线性时间内找到多数元素,且仅使用常量额外空间。速度依旧高效,虽然内存也是同样占用不少。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值