最长回文子串高效解法

给定一个字符串,找到其中最长的回文子串。回文是指正读和反读都相同的字符串。

算法思路

  1. 中心扩展法:回文串可以从其中心展开,中心可以是一个字符(奇数长度)或两个字符之间的空隙(偶数长度)。
  2. 遍历所有中心:对于字符串中的每一个字符和每两个字符之间的空隙,尝试向两边扩展,直到无法形成回文为止。
  3. 记录最长回文:在扩展过程中,记录遇到的最长回文子串的起始和结束位置。

Java实现

class Solution {
    public String longestPalindrome(String s) {
        if (s == null || s.length() < 1) return "";
        
        int start = 0, end = 0;
        for (int i = 0; i < s.length(); i++) {
            int len1 = expandAroundCenter(s, i, i);      // 奇数长度
            int len2 = expandAroundCenter(s, i, i + 1);  // 偶数长度
            int len = Math.max(len1, len2);
            if (len > end - start) {
                start = i - (len - 1) / 2;
                end = i + len / 2;
            }
        }
        return s.substring(start, end + 1);
    }
    
    private int expandAroundCenter(String s, int left, int right) {
        while (left >= 0 && right < s.length() && s.charAt(left) == s.charAt(right)) {
            left--;
            right++;
        }
        return right - left - 1;
    }
}

代码解释

  • longestPalindrome方法
    • 初始化startend用于记录最长回文子串的起始和结束位置。
    • 遍历中心:对每个字符和每两个字符之间的空隙,调用expandAroundCenter计算回文长度。
    • 更新最长回文:根据返回的回文长度,更新startend
  • expandAroundCenter方法
    • 中心扩展:从给定的leftright开始,向两边扩展,直到字符不相等或越界。
    • 返回长度:返回当前回文的长度(right - left - 1)。

复杂度分析

  • 时间复杂度:O(n²),其中n是字符串的长度。每个字符最多被访问两次(一次作为奇数中心,一次作为偶数中心)。
  • 空间复杂度:O(1),仅使用了常数级别的额外空间。

通过中心扩展法,可以高效地找到最长的回文子串。该方法利用了回文的对称性质,从每个可能的中心向两边扩展,确保了算法的正确性和效率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值