问题描述】如下图所示,多段图G=〈V,E〉是一个带权有向无环图(wDAG),其中顶点集可划分为k段,即V={V1,V2,⋯,Vk},对于∀(u,v)∈E, 有u∈Vi→v∈Vi+1为真。特别地,V1={s}, V1={t},s和t分别为图G的唯一的源点和汇点。多段图问题即求s到t的最短路径。
现要求使用动态规划求解该问题。设cost(i,j)是结点j∈Vi到汇点t的最短路径的长度,则有:
⎩⎨⎧cost(i,j)=j∈Vip∈Vi+1〈j,p〉∈Emin{c(j,p)+cost(i+1,p)},0≤i≤k−2cost(k,t)=0
请使用上述动态规划思想,利用「备忘录方法」或者「迭代递推」实现对多段图问题进行编程求解。
输入格式:
第1行输入多段图顶点数m和边数n,以一个空格隔开。
依次输入n条边的信息,每行输入一边条的顶点编号及权重,以一个空格隔开。
输出格式:
第1行输出s到t的一条最短路径(路径结点以一个空格隔开),第2行输出此最短路