PTA 多段图问题 python

本文介绍如何利用动态规划和Python编程解决多段图的最短路径问题。给定一个带权有向无环图(wDAG),其中顶点按段划分,从唯一源点s到唯一汇点t,目标是找到s到t的最短路径。通过动态规划公式,可以计算从每个段的节点到t的最短路径。示例展示了输入输出格式,并要求使用备忘录或迭代递推方法实现解决方案。
摘要由CSDN通过智能技术生成

问题描述】如下图所示,多段图G=〈V,E〉是一个带权有向无环图(wDAG),其中顶点集可划分为k段,即V={V1​,V2​,⋯,Vk​},对于∀(u,v)∈E, 有u∈Vi​→v∈Vi+1​为真。特别地,V1​={s}, V1​={t},s和t分别为图G的唯一的源点和汇点。多段图问题即求s到t的最短路径。

现要求使用动态规划求解该问题。设cost(i,j)是结点j∈Vi​到汇点t的最短路径的长度,则有:
⎩⎨⎧​cost(i,j)=j∈Vi​p∈Vi+1​〈j,p〉∈E​min​{c(j,p)+cost(i+1,p)},0≤i≤k−2cost(k,t)=0​
请使用上述动态规划思想,利用「备忘录方法」或者「迭代递推」实现对多段图问题进行编程求解。

输入格式:

第1行输入多段图顶点数m和边数n,以一个空格隔开。
依次输入n条边的信息,每行输入一边条的顶点编号及权重,以一个空格隔开。

输出格式:

第1行输出s到t的一条最短路径(路径结点以一个空格隔开),第2行输出此最短路

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值