昇思25天学习打卡营第4天|数据变换 Transforms实操(Text Transforms)

torchvision.transforms.Pad

torchvision.transforms.Pad(padding, fill=0, padding_mode='constant')

功能:对图像边缘进行填充

padding: 设置填充大小

  • 当为 a 时,上下左右均填充 a 个像素
  • 当为 (a, b) 时,左右填充 a 个像素,上下填充 b 个像素
  • 当为 (a, b, c, d) 时,左上右下分别填充 a,b,c,d
    padding_mode: 填充模式,有 4 种模式,constant、edge、reflect、symmetric

fill: 当 padding_mode 为 constant 时,设置填充的像素值,(R, G, B) 或者 (Gray)

torchvision.transforms.ColorJitter
torchvision.transforms.ColorJitter(brightness=0, contrast=0, saturation=0, hue=0)

功能:调整亮度、对比度、饱和度、色相。在照片的拍照过程中,可能会由于设备、光线问题,造成色彩上的偏差,因此需要调整这些属性,抵消这些因素带来的扰动。

  • brightness: 亮度调整因子
  • contrast: 对比度参数
  • saturation: 饱和度参数

brightness、contrast、saturation 参数:

当为 a 时,从 [max(0, 1-a), 1+a] 中随机选择;
当为 (a, b) 时,从 [a, b] 中选择。
hue: 色相参数
当为 a 时,从 [-a, a] 中选择参数。其中 。
当为 (a, b) 时,从 [a, b] 中选择参数。其中 。

在这里插入图片描述


数据变换 Transforms

通常情况下,直接加载的原始数据并不能直接送入神经网络进行训练,此时我们需要对其进行数据预处理。MindSpore提供不同种类的数据变换(Transforms),配合数据处理Pipeline来实现数据预处理。所有的Transforms均可通过map方法传入,实现对指定数据列的处理。

mindspore.dataset提供了面向图像、文本、音频等不同数据类型的Transforms,同时也支持使用Lambda函数,下面分别对其进行介绍。

%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
import numpy as np
from PIL import Image
from download import download
from mindspore.dataset import transforms, vision, text
from mindspore.dataset import GeneratorDataset, MnistDataset
Common Transforms
mindspore.dataset.transforms模块支持一系列通用Transforms。这里我们以Compose为例,介绍其使用方式。

Compose

Compose接收一个数据增强操作序列,然后将其组合成单个数据增强操作。我们仍基于Mnist数据集呈现Transforms的应用效果。

# Download data from open datasets

url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \
      "notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)

train_dataset = MnistDataset('MNIST_Data/train')

Downloading data from https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/MNIST_Data.zip (10.3 MB)

file_sizes: 100%|██████████████████████████| 10.8M/10.8M [00:01<00:00, 9.01MB/s]
Extracting zip file...
Successfully downloaded / unzipped to ./
image, label = next(train_dataset.create_tuple_iterator())
print(image.shape)
(28, 28, 1)
composed = transforms.Compose(
    [
        vision.Rescale(1.0 / 255.0, 0),
        vision.Normalize(mean=(0.1307,), std=(0.3081,)),
        vision.HWC2CHW()
    ]
)
train_dataset = train_dataset.map(composed, 'image')
image, label = next(train_dataset.create_tuple_iterator())
print(image.shape)
(1, 28, 28)

更多通用Transforms详见mindspore.dataset.transforms。

Vision Transforms

mindspore.dataset.vision模块提供一系列针对图像数据的Transforms。在Mnist数据处理过程中,使用了Rescale、Normalize和HWC2CHW变换。下面对其进行详述。

  • Rescale
    Rescale变换用于调整图像像素值的大小,包括两个参数:
  • rescale:缩放因子。
  • shift:平移因子。
    图像的每个像素将根据这两个参数进行调整,输出的像素值为outputi=inputi∗rescale+shift

这里我们先使用numpy随机生成一个像素值在[0, 255]的图像,将其像素值进行缩放。

random_np = np.random.randint(0, 255, (48, 48), np.uint8)
random_image = Image.fromarray(random_np)
print(random_np)
[[170  10 218 ...  81 128  96]
 [  2 107 146 ... 239 178 165]
 [232 137 235 ... 222 109 216]
 ...
 [193 140  60 ...  72 133 144]
 [232 175  58 ...  55 110  94]
 [152 241 105 ... 187  45  43]]

为了更直观地呈现Transform前后的数据对比,我们使用Transforms的Eager模式进行演示。首先实例化Transform对象,然后调用对象进行数据处理。

rescale = vision.Rescale(1.0 / 255.0, 0)
rescaled_image = rescale(random_image)
print(rescaled_image)
[[0.6666667  0.03921569 0.854902   ... 0.31764707 0.5019608  0.37647063]
 [0.00784314 0.41960788 0.57254905 ... 0.93725497 0.69803923 0.64705884]
 [0.909804   0.5372549  0.9215687  ... 0.8705883  0.427451   0.8470589 ]
 ...
 [0.7568628  0.54901963 0.23529413 ... 0.28235295 0.52156866 0.5647059 ]
 [0.909804   0.6862745  0.227451   ... 0.21568629 0.43137258 0.36862746]
 [0.59607846 0.9450981  0.41176474 ... 0.73333335 0.1764706  0.16862746]]

在这里插入图片描述

可以看到,使用Rescale后的每个像素值都进行了缩放。

Normalize

Normalize变换用于对输入图像的归一化,包括三个参数:

  • mean:图像每个通道的均值。
  • std:图像每个通道的标准差。
  • is_hwc:bool值,输入图像的格式。True为(height, width, channel),False为(channel, height, width)。

图像的每个通道将根据mean和std进行调整,计算公式为outputc=inputc−meancstdc,其中 c代表通道索引。

normalize = vision.Normalize(mean=(0.1307,), std=(0.3081,))
normalized_image = normalize(rescaled_image)
print(normalized_image)
[[ 1.7395868  -0.29693064  2.3505423  ...  0.60677403  1.2050011
   0.7976976 ]
 [-0.3987565   0.9377082   1.4341093  ...  2.617835    1.8414128
   1.6759458 ]
 [ 2.5287375   1.3195552   2.5669222  ...  2.4014552   0.9631647
   2.3250859 ]
 ...
 [ 2.0323365   1.3577399   0.33948112 ...  0.49221992  1.2686423
   1.4086528 ]
 [ 2.5287375   1.803228    0.31402466 ...  0.27583995  0.9758929
   0.77224106]
 [ 1.5104787   2.6432917   0.9122518  ...  1.9559668   0.14855757
   0.12310111]]

HWC2CHW

HWC2CHW变换用于转换图像格式。在不同的硬件设备中可能会对(height, width, channel)或(channel, height, width)两种不同格式有针对性优化。MindSpore设置HWC为默认图像格式,在有CHW格式需求时,可使用该变换进行处理。

这里我们先将前文中normalized_image处理为HWC格式,然后进行转换。可以看到转换前后的shape发生了变化。

hwc_image = np.expand_dims(normalized_image, -1)
hwc2chw = vision.HWC2CHW()
chw_image = hwc2chw(hwc_image)
print(hwc_image.shape, chw_image.shape)

(48, 48, 1) (1, 48, 48)

更多Vision Transforms详见mindspore.dataset.vision。

Text Transforms

mindspore.dataset.text模块提供一系列针对文本数据的Transforms。与图像数据不同,文本数据需要有分词(Tokenize)、构建词表、Token转Index等操作。这里简单介绍其使用方法。

首先我们定义三段文本,作为待处理的数据,并使用GeneratorDataset进行加载。

texts = ['Welcome to Beijing']
test_dataset = GeneratorDataset(texts, 'text')

在这里插入图片描述

PythonTokenizer

分词(Tokenize)操作是文本数据的基础处理方法,MindSpore提供多种不同的Tokenizer。这里我们选择基础的PythonTokenizer举例,此Tokenizer允许用户自由实现分词策略。随后我们利用map操作将此分词器应用到输入的文本中,对其进行分词。

def my_tokenizer(content):
    return content.split()

test_dataset = test_dataset.map(text.PythonTokenizer(my_tokenizer))
print(next(test_dataset.create_tuple_iterator()))
[Tensor(shape=[3], dtype=String, value= ['Welcome', 'to', 'Beijing'])]

Lookup

Lookup为词表映射变换,用来将Token转换为Index。在使用Lookup前,需要构造词表,一般可以加载已有的词表,或使用Vocab生成词表。这里我们选择使用Vocab.from_dataset方法从数据集中生成词表。

vocab = text.Vocab.from_dataset(test_dataset)

获得词表后我们可以使用vocab方法查看词表。

print(vocab.vocab())
{'to': 2, 'Beijing': 0, 'Welcome': 1}

生成词表后,可以配合map方法进行词表映射变换,将Token转为Index。

test_dataset = test_dataset.map(text.Lookup(vocab))
print(next(test_dataset.create_tuple_iterator()))
[Tensor(shape=[3], dtype=Int32, value= [1, 2, 0])]

更多Text Transforms详见mindspore.dataset.text。

Lambda Transforms

Lambda函数是一种不需要名字、由一个单独表达式组成的匿名函数,表达式会在调用时被求值。Lambda Transforms可以加载任意定义的Lambda函数,提供足够的灵活度。在这里,我们首先使用一个简单的Lambda函数,对输入数据乘2:

test_dataset = GeneratorDataset([1, 2, 3], 'data', shuffle=False)
test_dataset = test_dataset.map(lambda x: x * 2)
print(list(test_dataset.create_tuple_iterator()))
[[Tensor(shape=[], dtype=Int64, value= 2)], [Tensor(shape=[], dtype=Int64, value= 4)], [Tensor(shape=[], dtype=Int64, value= 6)]]

可以看到map传入Lambda函数后,迭代获得数据进行了乘2操作。

我们也可以定义较复杂的函数,配合Lambda函数实现复杂数据处理:

def func(x):
    return x * x + 2

test_dataset = test_dataset.map(lambda x: func(x))
print(list(test_dataset.create_tuple_iterator()))
[[Tensor(shape=[], dtype=Int64, value= 6)], [Tensor(shape=[], dtype=Int64, value= 18)], [Tensor(shape=[], dtype=Int64, value= 38)]]

在这里插入图片描述

  • 28
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值