采用IEEE33节点配电网进行仿真,搭建了含风光,储能,柴油发电机和燃气轮机的配电网经济调度模型

本文介绍了一种采用IEEE33节点配电网进行仿真的经济调度模型,涉及风光、储能、柴油发电机和燃气轮机。模型以最小化运行成本为目标,考虑储能及潮流约束,通过粒子群算法求解,得出各分布式电源的运行计划。程序详细分析了全局变量、参数初始化、种群初始化、适应度计算和约束处理,实现了电源优化调度,降低了运行成本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于IEEE33的主动配电网优化,采用IEEE33节点配电网进行仿真,搭建了含风光,储能,柴油发电机和燃气轮机的配电网经济调度模型,以总的运行成本最小为目标,考虑了储能以及潮流等约束,采用粒子群算法对模型进行求解,得到了各个分布式电源的运行计划。
这段程序是一个基于IEEE33节点电网的分布式电源优化调度模型。下面我将对程序进行详细的分析和解释。

首先,程序使用了一些全局变量,包括光伏发电量(PV)、风力发电量(WT)、负荷(Pload)以及各种电源的价格(PV_price、BT_price、WT_price、DG_price)和电网的分时电价(grid_price)。

然后,程序对一些参数进行了初始化,包括微型燃气轮机的最大功率(MTMaxPower)和最小功率(MTMinPower)、柴油发电机的最大功率(GridMaxImportPower)和最小功率(GridMinImportPower)、储能的最大放电功率(StorageMaxDischargingPower)和最大充电功率(StorageMaxChargingPower)等。

接下来,程序使用一个双重循环来初始化种群个体的位置和速度。其中,位置(x)表示各个电源的功率输出,速度(v)表示各个电源的功率变化速度。根据节点的不同,电源的功率范围也有所不同,程序对各个电源的功率进行了限制。

然后,程序计算了优化前的成本(C_before),并进入主循环。主循环中,程序根

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值