一·深度学习
深度学习(Deep Learning)是机器学习的一个分支,它基于人工神经网络的研究。深度学习模型由多层神经元组成,这些层次可以捕捉数据中的复杂结构和抽象特征。深度学习在许多领域都取得了显著的成功,包括计算机视觉、自然语言处理、语音识别、游戏和机器人等。
深度学习的核心概念包括:
-
神经网络(Neural Networks):模仿人脑神经元结构的计算模型,用于学习和识别数据中的模式。
-
反向传播(Backpropagation):一种优化算法,用于通过调整神经网络的权重来最小化损失函数。
-
梯度下降(Gradient Descent):一种优化算法,用于寻找使损失函数最小的参数值。
-
激活函数(Activation Functions):引入非线性因素,使得神经网络能够学习复杂的关系。
-
卷积神经网络(Convolutional Neural Networks, CNNs):特别适用于图像数据的神经网络结构,能够捕捉局部特征。
-
循环神经网络(Recurrent Neural Networks, RNNs):处理序列数据的神经网络,能够记忆之前的信息并应用于当前的决策。
-
长短期记忆网络(Long Short-Term Memory, LSTM):一种特殊类型的RNN,能够更好地捕捉长期依赖关系。
-
转移学习(Transfer Le