深度学习简介

一·深度学习

深度学习(Deep Learning)是机器学习的一个分支,它基于人工神经网络的研究。深度学习模型由多层神经元组成,这些层次可以捕捉数据中的复杂结构和抽象特征。深度学习在许多领域都取得了显著的成功,包括计算机视觉、自然语言处理、语音识别、游戏和机器人等。

深度学习的核心概念包括:

  1. 神经网络(Neural Networks):模仿人脑神经元结构的计算模型,用于学习和识别数据中的模式。

  2. 反向传播(Backpropagation):一种优化算法,用于通过调整神经网络的权重来最小化损失函数。

  3. 梯度下降(Gradient Descent):一种优化算法,用于寻找使损失函数最小的参数值。

  4. 激活函数(Activation Functions):引入非线性因素,使得神经网络能够学习复杂的关系。

  5. 卷积神经网络(Convolutional Neural Networks, CNNs):特别适用于图像数据的神经网络结构,能够捕捉局部特征。

  6. 循环神经网络(Recurrent Neural Networks, RNNs):处理序列数据的神经网络,能够记忆之前的信息并应用于当前的决策。

  7. 长短期记忆网络(Long Short-Term Memory, LSTM):一种特殊类型的RNN,能够更好地捕捉长期依赖关系。

  8. 转移学习(Transfer Le

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值