故障馈线检测对于维护配电网络中能源供应的安全性和稳定性至关重要

该研究提出了一种新的故障馈线检测方法,利用CNN识别叠加的零序电流图像以提高检测精度。通过在电流之间进行相关性比较,同时适应配电网拓扑变化。为解决零序电流随时间快速衰减的问题,文中引入了注意力学习模块增强判别能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

故障馈线检测对于维护配电网络中能源供应的安全性和稳定性至关重要。
为了提高检测精度,本研究提出了一种基于叠加零序电流图像识别的故障馈线检测方法。
利用卷积神经网络(CNN)识别同一图中的叠加电流,而不是原始的单个电流,可以实现电流之间的相关性比较。
此外,不同馈线的零序电流按特定顺序叠加,CNN可以在进行相关性比较的同时适应配电网拓扑的变化。
由于零序电流随时间迅速衰减,因此将注意力学习模块嵌入到 CNN 中以增强判别能力。
请添加图片描述

ID:62300689295476006

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值