假期小作业2

代码展示

# 导入所需库
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

# 1. 创建自定义数据集
np.random.seed(0)  # 设置随机种子,确保结果可复现
X = np.random.rand(100, 1) * 10  # 生成10个随机数,范围在0到10之间
y = 3 * X + 2 + np.random.randn(100, 1) * 2  # 线性关系 y = 3x + 2,加入噪声

# 2. 划分数据集(测试集30%,训练集70%)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 3. 创建线性回归模型
model = LinearRegression()

# 4. 拟合模型
model.fit(X_train, y_train)

# 5. 使用模型进行预测
y_pred = model.predict(X_test)

# 6. 评估模型
mse = mean_squared_error(y_test, y_pred)
print(f"均方误差 (MSE): {mse}")

# 7. 可视化结果
plt.scatter(X, y, color='red', label='point')
plt.plot(X_test, y_pred, color='green', label='line')
plt.xlabel('X')
plt.ylabel('y')
plt.legend()
plt.show()

效果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值