代码展示
# 导入所需库
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
# 1. 创建自定义数据集
np.random.seed(0) # 设置随机种子,确保结果可复现
X = np.random.rand(100, 1) * 10 # 生成10个随机数,范围在0到10之间
y = 3 * X + 2 + np.random.randn(100, 1) * 2 # 线性关系 y = 3x + 2,加入噪声
# 2. 划分数据集(测试集30%,训练集70%)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# 3. 创建线性回归模型
model = LinearRegression()
# 4. 拟合模型
model.fit(X_train, y_train)
# 5. 使用模型进行预测
y_pred = model.predict(X_test)
# 6. 评估模型
mse = mean_squared_error(y_test, y_pred)
print(f"均方误差 (MSE): {mse}")
# 7. 可视化结果
plt.scatter(X, y, color='red', label='point')
plt.plot(X_test, y_pred, color='green', label='line')
plt.xlabel('X')
plt.ylabel('y')
plt.legend()
plt.show()
效果