算法--二维区域和检索-矩阵不可变

方法:前缀和

初始化时对矩阵的每一行计算前缀和,检索时对二维区域中的每一行计算子数组和,然后对每一行的子数组和计算总和。

package com.algo.lesson01;

public class Solution_LCR013 {
    /*private int[][] matrix;

    private int[][] sums;
    public Solution_LCR013(int[][] matrix) {
        int rows = matrix.length;
        int columns = matrix[0].length;
        this.matrix = new int[rows][columns];
        for (int i = 0; i < rows; i++) {
            this.matrix[i] = Arrays.copyOf(matrix[i],columns);
        }
        this.sums = new int[rows+1][columns+1];
        //this.sums[i][j] 表示前i行前j列中间的和
        for (int i = 1; i <= rows ; i++) {
            for (int j = 1; j <=  columns ; j++) {
                this.sums[i][j] = this.sums[i-1][j]+this.sums[i][j-1]-this.sums[i-1][j-1]+this.matrix[i-1][j-1];
            }
        }
    }

    public int sumRegion(int row1, int col1, int row2, int col2) {
           int sum = 0;
        for (int i = row1; i <= row2; i++) {
            for (int j = col1; j <= col2 ; j++) {
                sum += this.matrix[i][j];
            }
        }
        return sum;
    }*/

    private int[][] sums;
    public Solution_LCR013(int[][] matrix) {
        int m = matrix.length;
        if (m>0){
            int n = matrix[0].length;
            sums = new int[m][n+1];
            for (int i = 0; i < m; i++) {
                for (int j = 0; j < n; j++) {
                    sums[i][j+1] = sums[i][j] + matrix[i][j];
                }
            }
        }
    }

    public int sumRegion(int row1, int col1, int row2, int col2) {
        int sum = 0;
        for (int i = row1; i <= row2; i++) {
            sum += sums[i][col2 + 1] - sums[i][col1];
        }
        return sum;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lil_侯昊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值