python数据分析之数据清洗

目录

1.简介

2.学习内容:

3.示例代码


1.简介

数据清洗是指发现并纠正数据文件中可识别的错误的最后一道程序,包括检查数据一致性,处理无效值和缺失值等。数据清洗的主要任务是过滤那些不符合要求的数据,将数据转化为“干净”的、可信赖的、一致的数据,从而满足数据质量、准确性、完整性和其他要求。

数据清洗通常包括以下步骤:

  1. 识别和定位问题数据:通过数据探索和可视化,识别出异常值、缺失值、重复数据等问题数据。
  2. 处理缺失值:根据实际情况选择填充方法,如使用均值、中位数、众数等。
  3. 处理异常值:根据数据的分布和特征,选择合适的异常值处理方法,如删除、替换、或用插值等方法处理。
  4. 去除重复数据:基于业务规则和需求判断重复数据的取舍。
  5. 转换数据:根据业务规则和需求对数据进行转换和编码。
  6. 验证数据:通过数据质量检查来验证清洗后的数据是否满足要求。

数据清洗是数据分析的重要前置步骤,清洗后的“干净”数据能够提高数据分析的准确性和可靠性,为后续的数据分析提供更好的基础。

2.学习内容:

数据类型转换

  • 了解如何将字符串转换为数值类型,例如使用pd.to_numeric()函数。
  • 学习日期时间数据的处理,如何将字符串转换为日期时间类型,以及如何提取日期和时间的不同部分。

重复值和重复行处理

  • 掌握如何检测重复的行或列,例如使用duplicated()drop_duplicates()函数。
  • 学习如何基于特定的列或多个列进行去重处理。

数据整合与重塑

  • 了解如何将多个数据源合并为一个数据集,例如使用pd.concat()pd.merge()函数。
  • 学习如何重塑数据,例如使用melt()pivot()函数。

数据探索与可视化

  • 利用数据可视化来探索数据分布、异常值和模式。
  • 学习如何使用Matplotlib、Seaborn等库进行数据可视化。

学习资源推荐

  • 《Python数据分析从入门到实践》:一本系统介绍Python数据分析基础知识的书籍,涵盖数据清洗的各个方面。
  • Datacamp平台上的Python数据分析课程:提供了大量的实际案例和实践操作,有助于深入理解数据清洗的技巧和方法。
  • GitHub上的开源项目:可以找到许多关于数据清洗的Python代码示例和项目,从中学习不同的数据处理策略和技巧。

通过不断地学习和实践,你将逐渐掌握数据清洗的技巧和方法,提升你的数据分析能力。记住,数据清洗是一个持续的过程,随着数据的不断变化和新的数据处理技术的出现,需要不断地更新和改进你的清洗策略

3.示例代码

  1. 假设我们有一个简单的Pandas DataFrame,其中包含了一些缺失值和异常值
     

    #导入需要用到的模块
    import pandas as pd  
    import numpy as np  
      
    # 创建一个包含缺失值和异常值的简单DataFrame  
    data = {  
        'Name': ['Alice', np.nan, 'Charlie'],  
        'Age': [25, 100, 35],  # 假设35岁是异常值  
        'Salary': [50000, 100000, 200000]  # 假设100000是不寻常的高薪  
    }  
    df = pd.DataFrame(data)  
    print("原始DataFrame:")  
    print(df)

  2. 接下来,我们将展示如何进行数据清洗:
     

    # 1. 缺失值处理 - 使用fillna方法填充缺失值,例如用平均值填充  
    df['Name'].fillna('Unknown', inplace=True)  # 用'Unknown'填充Name列的缺失值  
    df['Age'].fillna(df['Age'].mean(), inplace=True)  # 用Age列的平均值填充缺失值  
    print("处理后的DataFrame:")  
    print(df)

  3. 接下来,我们将展示如何进行异常值处理:
     

    # 2. 异常值处理 - 使用IQR方法检测异常值  
    Q1 = df['Age'].quantile(0.25)  
    Q3 = df['Age'].quantile(0.75)  
    IQR = Q3 - Q1  
    lower_bound = Q1 - 1.5 * IQR  
    upper_bound = Q3 + 1.5 * IQR  
      
    outliers = df[(df['Age'] < lower_bound) | (df['Age'] > upper_bound)]  
    print("异常值:")  
    print(outliers)

  4. 最后,我们将展示如何进行数据规范化:
     

    # 3. 数据规范化 - 使用最小-最大规范化方法  
    min_age = df['Age'].min()  
    max_age = df['Age'].max()  
    df['Age'] = (df['Age'] - min_age) / (max_age - min_age)  # 0-1规范化  
    print("规范化后的DataFrame:")  
    print(df)


    通过以上示例,我们可以看到数据清洗在数据分析中的重要性,以及如何使用Python的Pandas库进行数据清洗的基本步骤。当然,实际的数据清洗可能会更复杂,需要更多的技巧和经验,但这个示例应该为你提供了一个良好的起点

  • 28
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值