Python自学教程| 详解Python每个重要知识点,简单易懂,学完即可就业(内附思维导图+视频+书籍)

在这里插入图片描述

本文目录:

  1. 什么是Python?

  2. Python的用途是什么?

  3. 如何安装Python?

  4. 为什么选择Python?

  5. R与Python

  6. 学习Python的最佳方法

  7. 什么是顶级Python IDE

1.什么是Python?

Python是一种高级的,面向对象的编程语言。开发领域的大多数初学者都喜欢Python,因为它的简单性和多功能性使其成为最先学习的语言之一。它也得到了社区的大力支持,并与日俱增。

在这个面向初学者的Python教程中,我们将学习Python作为编程语言的基础知识,并了解如何开始使用它。我们将看到如何下载和安装Python以及如何使用流行的IDE开始编码。我们还将详细讨论jupyter功能。

2.Python的用途是什么?

当您使用浏览,每天在视频网站上观看视频或在收听自己喜欢的音乐时,请记住,他们所有人都使用Python来满足编程需求。Python在应用程序,平台和服务中有多种用途。让我们在这里谈论一些。

2.1-Web开发

大量的预构建Python库使Web开发变得更加简单。由于其简洁明了的语法,因此编写Python代码的时间更少。这有助于快速建立原型,从而加快商业产品的投资回报率。内置的测试框架有助于交付无错误的代码。大量支持良好的框架有助于在不影响解决方案性能的情况下加快实施速度。

2.2-物联网

为了简单起见,让我们将物联网视为“将嵌入式系统连接到互联网的物理对象”。它在涉及大数据,机器学习,数据分析,无线数据网络和网络物理系统的项目中起着至关重要的作用。物联网项目还涉及实时分析。

考虑到上述应用领域,编程语言应该是一个大胆的选择。这是Python选中所有复选框的地方。此外,Python还具有可伸缩性,可扩展性,可移植性和可嵌入性。这使得Python独立于系统,并使其可以容纳多台单板计算机,而与操作系统或体系结构无关。

而且,Python是管理和组织复杂数据的绝佳选择。对于大量数据的物联网系统而言,它特别有用。Python成为IoT应用程序理想编程语言的另一个原因是它与科学计算的紧密联系。

2.3-机器学习

机器学习为解决问题提供了一种全新的方法。由于以下原因,Python处于机器学习和数据科学的最前沿:

  • 广泛的开源库支持

  • 高效而精确的语法

  • 易于与其他编程语言集成

  • Python的入门点很低

  • 可扩展到不同的操作系统和体系结构

3.如何安装Python?

如果您是Windows用户,并且已使用Anaconda.org上可用的Anaconda发行包安装了Python,则需要转到“ Download Anaconda ”,然后下载适用于Python 3.6的最新版本。

下载此文件后,这是一个非常简单明了的过程,并且将为您安装Python。下一步是启动IDE,以开始使用Python进行编码。

因此,一旦安装了Python,您就可以在Python安装的顶部拥有多个IDE或文本编辑器。对于文本编辑器,可以使用Sublime或Notepad ++之类的东西。如果您喜欢使用集成开发环境,则可以使用Jupyter。此外,还有其他选项,例如Wingware,Komodo,Pycharm和Spyder。

Python中有多个可用的软件包。一些工具库是numpy,pandas,seaborn以进行可视化,并通过scipy进行计算和统计。其他是xlrb,openpyxl,matplotlib和io。

安装教程请戳这里2023年最细python安装教程

4.为什么选择Python?

因为Python已成为支持数据科学和机器学习应用程序的首选编程语言。当然,Python有其优势。与其他编程语言相比,它是快速的,甚至R也是如此。

我们可以很容易地说Python是一个快速的编译器。由于它是一种基于Java的编程语言,因此您可以将其应用程序扩展到分析研究,分析建模和统计建模之外。您将能够使用Python创建Web应用程序,并将这些Web应用程序直接集成到后台的分析模型中。

Python也很容易与其他平台和其他编程语言集成。它具有通用的面向对象的编程体系结构,其中现有的IT开发人员,IT分析师和IT程序员发现很容易过渡到分析领域。
由于Python中的编码结构是面向对象的编程体系结构,因此它具有出色的文档支持。

使用Python的7个理由

  1. 可读且可维护的代码

  2. 多种编程范例

  3. 与主要平台和系统兼容

  4. 强大的标准库

  5. 开源框架和工具

  6. 简化软件开发

  7. 测试驱动开发

5.R vs Python?

R是为统计分析应用开发的;另一方面; Python是作为通用编程语言开发的。对于使用大型数据集,解决机器学习问题并创建复杂的数据可视化的人来说,这两者都是必不可少的。

让我们看一下R和Python之间的区别。

开发Python是为了提供一种编写脚本的方法,以使每天遇到的一些例行任务自动化。但是,随着时间的流逝,Python已经发展并在许多其他领域变得非常有用,尤其是数据分析。

R是一种编程语言,同时也是用于图形和数据分析的开源软件。它具有可以在任何计算机系统上运行的优势,并且被数据挖掘者和统计人员用于对其数据进行表示和分析。

Python与R进行数据分析编程对于
数据科学家来说,决定使用Python还是R进行数据分析是一个普遍的挑战。尽管R是纯粹为统计人员开发的,使它能够将分析描述为可视化数据的特定优势,但Python凭借其通用特性和语法非常规则而脱颖而出。基于这些差异,有必要将两种语言进行比较,以确定哪种语言最适合它们。

Python程式设计语言

  • – Python编程语言受到Modula-3,ABC和C语言的启发

  • – Python专注于代码的可读性和生产力

  • –由于其易于使用和简单的语法,因此更易于开发代码和调试

  • –代码缩进会影响其含义

  • –所有功能通常都以相同的样式编写

  • – Python非常灵活,也可以用于Web脚本。

  • –它具有相对渐进和较低的学习曲线,因为它注重简单性和可读性

  • –适合开始编程的人

  • –其Package索引称为PyPi。其带有库的Python软件仓库。尽管用户可以选择为Pypi做贡献。在实践中很难。

  • – RPy2可在Python中用于运行R代码的库。用于从Python向R提供较低的级别。

  • – 2014年,Dice Tech薪酬调查显示,经验丰富的专家的平均工资为$ 94139

  • –主要用于需要将分析的数据与Web应用程序集成或将统计信息用于数据库生产时

  • –尽管数据处理能力有所提高,但过去处理数据的能力仍然是一项挑战,这是由于其数据处理程序包尚处于初期阶段

  • –您必须使用pandas和NumPy之类的工具才能将其用于数据分析

  • –可用的IDE包括Spyder,IPython Notebook。

R编程

  • – S编程语言激发R。

  • –强调用户友好的数据分析方法,图形模型和统计信息。

  • –由于统计模型只用很少的几行编写,因此使用起来有点困难。

  • –存在R样式表,尽管很少使用

  • –表示或编写相同功能块的方法有很多。

  • –使使用复杂的R公式变得容易。对于它的许多统计模型和检验。

  • –在学习基础知识时,学习曲线开始就很陡。但是以后学习高级主题变得非常容易

  • –对于专业程序员来说并不难。

  • –全面的R存档网络(CRAN)。CRAN是R存储库软件包,很容易由用户提供。

  • – R中的rpython包用于运行Python代码。调用Python方法或函数并获取数据。

  • – 2014年,Dice Tech薪酬调查显示,经验丰富的专家的平均工资为$ 115 531

  • –主要用于需要独立计算或独立服务器的分析。

  • –用于初学者的关键任务时更容易。使用很少的代码行来编写统计方法。

  • –非常适合处理大包装中的数据。可用的测试和公式的使用。

  • – R不需要其他程序包即可进行基本分析。对于大型数据集,只需要像dplyr这样的软件包即可。

  • –使用R studio IDE

Python –优点

  1. IPython Notebook促进并简化了Python和数据的使用。这是因为您可以与其他人共享笔记本而不必告诉他们安装任何东西。这减少了代码组织的开销,因此使人们可以专注于完成其他有用的工作。

  2. 鉴于它是一种通用语言,因此它既直观又简单。它使数据科学家的学习曲线平坦,从而使他能够提高自己的程序编写技能。Python还有一个内置的测试框架,可以鼓励改善测试范围,这反过来又保证了代码的可靠性和可重用性。

  3. 它是一种多用途的编程语言,它将具有不同背景的人们(统计学家和程序员)聚集在一起。

R –优点

  1. R提供清晰的数据可视化,使数据得到有效的设计和理解。ggvis,ggplot2,rChart和googleVis是其可视化软件包的示例。

  2. R具有活跃社区和理想软件包的广阔生态系统。该软件包可从Github,BioConductor和CRAN获得。

  3. 它是由统计学家为统计学家开发的。因此,他们可以通过R包和代码交流概念和想法。

两种语言各有优势,您可根据个人喜好选择一种可以解决您问题的语言。

6.学习Python的最佳方法?

易于学习是Python受欢迎的主要原因。它是一种简单且无类型的编程语言,因此易于学习。学习语言所需的时间取决于您要使用Python达到的水平。同样,学习曲线可以根据个人能力而变短或变长。

一个人需要6到8周的时间来学习Python的基础知识。这将包括学习语法,关键字,函数和类,数据类型,基本编码和异常处理

并非所有Python专业人士都需要高级Python技能。根据您的工作性质,您可以学习诸如数据库编程,套接字编程,多线程,同步技术等技能。

高度复杂的Python技能包括数据分析的概念,所需库的动手经验,图像处理等。每个专业技能都需要大约一周的时间才能掌握。

7.什么是最受欢迎的Python IDE?

有7个适用于Python的顶级IDE

  1. 斯派德

  2. 药香

  3. 托尼

  4. 原子

  5. 朱皮特

  6. 科莫多

  7. 翼件

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值