大模型应用绪论(60页PPT)(附下载方式)

篇幅所限,本文只提供部分资料内容,完整资料请看下面链接
https://download.csdn.net/download/2301_78256053/88280568

资料解读:《大模型应用绪论》

详细资料请看本解读文章的最后内容。

作为人工智能领域的前沿研究方向,大模型应用正在重塑我们对通用人工智能的认知与实践。西南财经大学通用人工智能与数字经济创新团队编写的《大模型应用绪论》系统性地构建了这一领域的知识体系,本文将对该资料进行专业解读。

课程体系方面,该资料展现了一个完整的教学框架。作为3学分的专业方向课,课程采用理论授课与实践案例分析相结合的方式,重点培养提示工程和AI智能体设计两大核心能力。教材《大模型应用:从提示工程到AI智能体》由陈星延等学者编撰,内容覆盖从基础理论到行业应用的完整知识链。教学安排上,17周课程循序渐进地展开,从大模型基础概念延伸到智能体开发平台,最终落脚于行业实践案例,体现了"理论-工具-应用"的三阶培养思路。

在人工智能概述部分,资料开篇引用马化腾的观点,强调人工智能是人类智慧的延伸工具而非替代。这一哲学定位贯穿全文。通过梳理1940年代至今的技术演进史,清晰呈现了从符号主义到深度学习的范式转变。特别值得关注的是对六大核心技术的解析:机器学习的数据驱动特性、深度学习的多层网络结构、NLP的语义理解机制、计算机视觉的识别生成能力、语音技术的双向转换特性,以及强化学习的环境交互特征。这些技术共同构成了大模型发展的基础支撑。

自然语言处理章节展现出严谨的技术解构能力。资料将NLP划分为基础技术和应用技术两个维度:在基础层面,详细剖析了分词中的规范界定、歧义消解等挑战;命名实体识别的深度学习方法;词性标注的语法解析功能;以及句法、语义、篇章三个层级的分析技术。应用层面则系统介绍了机器翻译的Transformer架构、文本分类的情感分析应用、信息抽取的知识图谱价值、自动文摘的要点提取能力等实践场景。这种"基础-应用"的二分法体现了扎实的学科建构思维。

语言模型部分的技术演进分析尤为精彩。资料首先阐明语言模型的本质是学习词序列概率分布,随后通过三代模型的对比展现技术跃迁:统计语言模型(N-gram)虽然简单高效但受限于局部依赖;神经语言模型(LSTM/RNN)引入记忆机制却仍存在梯度消失;预训练模型(BERT/GPT/T5)则通过"预训练-微调"范式实现突破。这种技术发展脉络的梳理,为理解大模型奠定了必要的历史视角。

关于大语言模型(LLM)的解析是资料的技术制高点。资料精确定义LLM"理解并生成人类语言的参数化模型",并从三个维度展开:架构层面,Transformer的自注意力机制突破序列建模瓶颈;训练层面,千亿级参数规模形成知识涌现能力;计算层面,并行策略与专用芯片支撑超大规模训练。特别有价值的是对GPT(自回归)与BERT(自编码)两类范式的比较,这种对比分析对实际应用中的模型选型具有指导意义。

应用技术章节呈现出鲜明的实践导向。提示工程部分提出"输入即编程"的创新理念,详细拆解了角色设定、任务明确、格式控制等优化策略,并介绍思维链、自我一致性等高级技巧。AI智能体部分则将其定义为"具有环境感知和自主决策能力的软件实体",强调工具调用、多步工作流等特征。这种从静态提示到动态智能体的演进,反映了大模型应用的技术深化路径。

行业应用案例部分构建起完整的价值图谱。资料系统梳理了八大领域:文本生成侧重创作效率提升,机器翻译突破语言障碍,文本理解实现知识萃取,多模态应用打通视觉语言鸿沟。在垂直领域,金融场景的风险分析、法律场景的合同审查、教育场景的个性化辅导、医疗场景的辅助诊断等案例,充分展现了大模型的技术普惠价值。每个案例都包含具体的技术实现方案和效益评估指标,具有显著的参考价值。

这份资料最突出的特点是构建了"技术原理-方法工具-行业应用"的三维知识体系。在理论深度上,既包含Transformer架构等底层原理,也涵盖提示工程等应用方法;在实践广度上,既分析通用技术方案,也解剖行业具体案例。这种立体化的知识呈现方式,使其既适合作为教学材料,也可作为行业应用的参考手册。

接下来请您阅读下面的详细资料吧。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab@com

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值