机器学习
灯火君
这个作者很懒,什么都没留下…
展开
-
#机器学习 (4) 线性回归模型
不能让当前一个参数的更新,影响到下一次更新时偏导数值的计算。收敛到足够小,即模型足够符合现实情况。这时,我们就说,机器。生活中,决定一个问题的因素有多种。接下来,我们要衡量:假设函数和实际样本之间的。需要注意的是,在更新参数值时,必须。)初始化为0,开始梯度下降吧!到了预测未知情况的函数式。而实际情况是,每个因素对。)共同决定,每个因素对。原创 2023-06-06 18:27:23 · 89 阅读 · 0 评论 -
#机器学习 (3) KNN 算法
KNN算法建立在K-means算法的基础上,即我们已经得到了聚类后的数据点簇后,输入一个新的数据点,将它归为现有的簇中。选择K值:确定K值,即在预测时考虑最近数据点的数量。K值一般是一个正整数,根据实际问题和数据集的特点进行选择。计算距离:对于新样本,计算其与训练数据集中每个样本之间的距离。输出预测结果:根据排序结果,选取最高的标签,即为新样本的预测标签。选择最近邻:根据计算的距离,选择与新样本最近的K个邻居。排序:对于分类问题,通过对这K个邻居的标签进行排序。(两点间距离公式)、曼哈顿距离等。原创 2023-06-04 22:07:24 · 59 阅读 · 0 评论 -
#机器学习 (2) K-means 算法
分配数据点到最近的聚类中心:对于每个数据点,计算其与每个聚类中心之间的距离,并将其分配给距离最近的聚类中心。选择K个初始聚类中心:从数据集中随机选择K个数据点作为初始聚类中心,或者使用其他启发式方法进行初始化。更新聚类中心:对于每个聚类,计算其所有分配给它的数据点的平均值,并将该平均值作为新的聚类中心。重复步骤2和3,直到满足终止条件:终止条件可以是达到最大迭代次数或者聚类中心不再发生显著变化。输出聚类结果:聚类结果即为每个数据点所属的最终聚类中心。K-means 算法属于无监督学习,用于将数据集聚类。原创 2023-06-04 21:58:07 · 65 阅读 · 1 评论 -
#机器学习 (1) 梯度下降
4.重复第三步,也就是迭代式(1),直到坡度足够平滑时(当前坡度。的方向,然后迈出步伐。重复多次,就能到达山谷的底部(极小值)。,也就是函数梯度的反方向,是最快抵达山谷的方向。即为梯度下降算法收敛至函数极小值时,自变量的值。我们要从山坡上下来,首先要决定好自变量。1.首先,我们在函数定义域里面随机选取。),我们可以认为到达了谷底,即。这样,我们就离山谷进了一步。2.然后,我们需要定义误差。:到达某个位置时,山坡已经。:决定好方向后,迈出的。原创 2023-06-04 21:30:17 · 75 阅读 · 2 评论