- 博客(50)
- 收藏
- 关注
原创 【马铃薯叶片病害识别】Python+深度学习+算法模型+人工智能+Resnet50算法+图像识别+2026计算机毕设
马铃薯叶片病害识别系统,是一款基于深度学习技术的智能农业辅助工具,帮助农民快速、准确地识别马铃薯叶片上的常见病害。系统采用前后端分离架构,前端使用Vue3+Element Plus构建直观易用的用户界面,后端基于Flask框架提供稳定的API服务,核心识别算法则采用TensorFlow框架和ResNet50深度卷积神经网络模型。
2026-01-30 16:47:33
272
原创 【新闻文本分类识别系统】Python+深度学习+textCNN算法+模型训练+TensorFlow+计算机毕设项目
本新闻文本分类识别系统是一个基于深度学习的智能文本分类Web应用平台。系统采用前后端分离架构,后端使用Python Flask框架提供RESTful API服务,前端采用Vue3框架结合Element Plus组件库构建现代化用户界面。核心算法基于TensorFlow深度学习框架,采用textCNN(卷积神经网络)模型对中文新闻文本进行自动分类,可识别体育、财经、房产、家居、教育、科技、时尚、时政、游戏、娱乐等十大类别。
2026-01-29 21:08:44
321
原创 【害虫识别系统】Python+深度学习+人工智能+算法模型+TensorFlow+图像识别+卷积网络算法
基于深度学习的智能害虫识别系统,帮助农业生产者快速、准确地识别农作物病虫害,提高病虫害防治效率,保障农业生产安全。系统采用前后端分离架构,前端使用Vue3+Element Plus构建用户友好的交互界面,后端采用Flask框架提供高效的数据处理和API服务,核心识别算法基于TensorFlow深度学习框架和ResNet50卷积神经网络模型。系统主要功能包括:用户注册与登录、害虫图片上传、实时识别、识别历史记录查询、数据统计可视化等。用户可以通过上传害虫图片,
2026-01-29 16:52:39
490
原创 【宠物识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
宠物识别系统,本系统基于TensorFlow框架,采用卷积神经网络(CNN)算法,构建了一个能够识别37种常见宠物品种的智能识别系统。所使用的数据集涵盖了多个猫犬品种,例如阿比西尼亚猫、布偶猫、柴犬、哈士奇等。经过多轮迭代训练,最终得到了识别准确率较高的预测模型,并部署于Web端实现可视化交互。前端后端:Django算法:TensorFlow、卷积神经网络算法具体功能系统分为管理员和用户两个角色,登录后根据角色显示其可访问的页面模块。
2025-11-29 13:56:21
3596
13
原创 海洋生物识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
海洋生物系统,本项目基于深度学习技术,构建了一个集海洋生物识别、数据可视化和智能问答于一体的Web应用系统。系统采用TensorFlow框架搭建卷积神经网络模型,通过对22种常见海洋生物(包括海豚、鲸鱼、鲨鱼、珊瑚、海星等)数据集进行多轮迭代训练,最终获得高精度识别模型,并开发了功能完善的Web操作平台。前端后端:Django算法:TensorFlow、卷积神经网络算法具体功能系统分为管理员和用户两个角色,登录后根据角色显示其可访问的页面模块。
2025-11-29 13:42:22
1283
原创 昆虫识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
昆虫识别系统,本项目为一款基于深度学习的昆虫识别系统,融合当前人工智能技术热点,针对10种常见昆虫(包括蜜蜂、甲虫、蝴蝶、蝉、蜻蜓、蚱蜢、蛾、蝎子、蜗牛、蜘蛛)构建数据集,采用卷积神经网络(CNN)进行模型训练,最终实现了高精度的图像识别模型,并搭建了完整的Web端操作平台。前端后端:Django算法:TensorFlow、卷积神经网络算法具体功能系统分为管理员和用户两个角色,登录后根据角色显示其可访问的页面模块。
2025-11-27 15:02:56
1532
5
原创 眼疾识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
眼疾识别系统,基于TensorFlow搭建卷积神经网络算法,通过收集开源的4种常见眼部数据集图片(‘白内障’, ‘糖尿病性视网膜病变’, ‘青光眼’, ‘正常’)进行训练,最后得到一个识别精度较高的模型,然后搭建Web可视化操作平台。前端后端:Django算法:TensorFlow、卷积神经网络算法具体功能系统分为管理员和用户两个角色,登录后根据角色显示其可访问的页面模块。登录系统后可发布、查看、编辑文章,创建文章功能中集成了markdown编辑器,可对文章进行编辑。
2025-11-27 14:52:30
1040
原创 中草药识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
中草药识别系统,通过收集10种常见的中草药数据集,基于TensorFlow搭建卷积神经网络算法模型进行多轮迭代训练,最后得到一个识别精度较高的模型,然后使用最新的Vue3+Element plus搭建界面,后端Django处理请求,实现前后端分离开发模式,实现一个完整的可视化操作平台。前端后端:Django算法:TensorFlow、卷积神经网络算法具体功能系统分为管理员和用户两个角色,登录后根据角色显示其可访问的页面模块。
2025-11-25 17:15:32
1337
原创 鱼类识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
鱼类识别系统,基于TensorFlow搭建卷积神经网络算法,通过收集了包括‘墨鱼’、‘多宝鱼’、‘带鱼’、‘石斑鱼’等在内的30种鱼类图像数据集进行训练,最后得到一个识别精度较高的模型,然后搭建Web可视化操作平台。前端后端:Django算法:TensorFlow、卷积神经网络算法具体功能系统分为管理员和用户两个角色,登录后根据角色显示其可访问的页面模块。登录系统后可发布、查看、编辑文章,创建文章功能中集成了markdown编辑器,可对文章进行编辑。
2025-11-24 19:11:26
2794
11
原创 植物识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
植物识别系统,基于TensorFlow搭建卷积神经网络算法,通过对6种常见的植物叶片图片数据集(涵盖广玉兰、杜鹃、梧桐、樟叶、芭蕉、银杏六类常见植物)进行训练,最后得到一个识别精度较高的模型,然后搭建Web可视化操作平台。前端后端:Django算法:TensorFlow、卷积神经网络算法具体功能系统分为管理员和用户两个角色,登录后根据角色显示其可访问的页面模块。登录系统后可发布、查看、编辑文章,创建文章功能中集成了markdown编辑器,可对文章进行编辑。
2025-11-24 18:57:42
791
1
原创 动物识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
动物识别系统,通过TensorFlow搭建卷积神经网络算法,并收集了4种常见的动物数据集(猫、狗、鸡、马),对其进行多轮迭代训练,最后得到了一个精度较高的模型,并搭建Web可视化操作平台。前端后端:Django算法:TensorFlow、卷积神经网络算法具体功能系统分为管理员和用户两个角色,登录后根据角色显示其可访问的页面模块。登录系统后可发布、查看、编辑文章,创建文章功能中集成了markdown编辑器,可对文章进行编辑。在图像识别功能中,用户上传图片后,点击识别,可输出其识别结果和置信度。
2025-11-23 15:01:39
367
原创 交通标志识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
交通标志识别系统,本项目基于TensorFlow框架,构建了一套完整的交通标志识别系统。系统采用卷积神经网络(CNN)算法,针对40种常见交通标志(包括“停车避让”“减速让行”“限速15千米”“注意行人”“禁止左转弯”等)构建数据集,通过多轮迭代训练,最终获得高精度识别模型,并实现了基于Web的可视化操作平台。前端后端:Django算法:TensorFlow、卷积神经网络算法具体功能系统分为管理员和用户两个角色,登录后根据角色显示其可访问的页面模块。
2025-11-22 14:18:09
693
原创 花朵识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
花朵识别系统,本系统结合当下人工智能热点,基于深度学习搭建算法对5种常见的花朵(‘雏菊’, ‘蒲公英’, ‘玫瑰’, ‘向日葵’, ‘郁金香’)数据集进行训练,最后得到一个识别精度较高的模型。然后搭建了一个Web端的综合性操作平台。前端后端:Django算法:TensorFlow、卷积神经网络算法具体功能系统分为管理员和用户两个角色,登录后根据角色显示其可访问的页面模块。登录系统后可发布、查看、编辑文章,创建文章功能中集成了markdown编辑器,可对文章进行编辑。
2025-11-22 13:47:07
917
原创 果蔬识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
本系统基于TensorFlow框架,搭建了一个采用卷积神经网络(CNN)的果蔬图像识别模型。我们收集了包括‘土豆’、‘圣女果’、‘大白菜’、‘大葱’、‘梨’、‘胡萝卜’、‘芒果’、‘苹果’、‘西红柿’、‘韭菜’、‘香蕉’和‘黄瓜’在内的12类常见果蔬数据集,通过多轮迭代训练,最终得到一个识别准确率较高的深度学习模型。同时,系统配备了完整的Web可视化操作平台,便于用户交互使用。技术架构前端后端:Django算法:TensorFlow + 卷积神经网络(CNN)主要功能。
2025-11-21 21:34:55
593
1
原创 水果识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
水果识别系统,通过TensorFlow搭建卷积神经网络算法,并收集了10种常见的水果数据集(‘哈密瓜’, ‘椰子’, ‘樱桃’, ‘火龙果’, ‘猕猴桃’, ‘红苹果’, ‘芒果’, ‘葡萄’, ‘西瓜’, ‘香蕉’),对其进行多轮迭代训练,最后得到了一个精度较高的模型,并搭建Web可视化操作平台。前端后端:Django算法:TensorFlow、卷积神经网络算法具体功能系统分为管理员和用户两个角色,登录后根据角色显示其可访问的页面模块。
2025-11-21 16:44:01
2237
5
原创 花朵识别系统Python+深度学习+卷积神经网络算法+TensorFlow+人工智能
花朵识别系统。本系统采用Python作为主要编程语言,基于TensorFlow搭建ResNet50卷积神经网络算法模型,并基于前期收集到的5种常见的花朵数据集(向日葵、玫瑰、蒲公英、郁金香、菊花)进行处理后进行模型训练,最后得到一个识别精度较高的模型,然后保存为本地的h5格式文件,便于后续调用使用。在可视化操作界面开发中使用Django开发Web网页操作界面,实现用户上传一张花朵图片识别其名称。随着人工智能技术的快速发展,计算机视觉在图像识别领域的应用日益广泛。
2025-05-11 19:28:02
869
原创 基于Python深度学习的【猫狗宠物识别】系统设计实现
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【‘阿比西尼亚猫(Abyssinian)’, ‘孟加拉猫(Bengal)’, ‘暹罗猫(Birman)’, ‘孟买猫(Bombay)’, ‘英国短毛猫(British Shorthair)’, ‘埃及猫(Egyptian Mau)’, ‘缅因猫(Maine Coon)’, ‘波斯猫(Persian)’, ‘布偶猫(Ragdoll)’, ‘俄罗斯蓝猫(Russian Blu
2024-12-14 19:40:26
2092
原创 基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集(‘塑料’, ‘玻璃’, ‘纸张’, ‘纸板’, ‘金属’),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
2024-11-17 21:01:01
1109
原创 【汽车租聘管理与推荐】Python+Django网页界面+推荐算法+管理系统网站
汽车租聘管理与推荐系统。本系统使用Python作为主要编程语言,前端采用HTML、CSS、BootStrap等技术搭建前端界面,后端采用Django框架处理用户的请求。创新点:使用协同过滤推荐算法实现对当前用户个性化推荐。系统分为管理员和用户两个角色算法应用:系统使用协同过滤推荐算法基于用户评分信息计算相似度进行推荐管理员可以对用户和车辆信息进行管理。
2024-11-02 15:44:09
668
原创 【果实种子识别】Python+深度学习+人工智能+CNN卷积神经网络算法+TensorFlow+算法模型训练
果实种子识别系统,使用Python语言进行开发,通过TensorFlow搭建卷积神经网络算法模型,对10种坚果果实(‘杏仁’, ‘巴西坚果’, ‘腰果’, ‘椰子’, ‘榛子’, ‘夏威夷果’, ‘山核桃’, ‘松子’, ‘开心果’, ‘核桃’)等图片数据集进行训练,得到一个识别精度较高的模型文件,让后使用Django搭建Web网页端界面操作平台,实现用户上传一张坚果图片 识别其名称。
2024-11-01 15:27:42
1116
原创 【眼疾识别】Python+深度学习+人工智能+算法模型训练+TensorFlow+CNN卷积神经网络算法
开发眼疾识别系统时,我们选择Python作为核心编程语言,并依托深度学习技术,特别是利用TensorFlow框架来构建ResNet50卷积神经网络。该系统通过训练包含四种眼疾图像的数据集——白内障、糖尿病性视网膜病变、青光眼和正常眼睛——来提升模型的识别精度。随后,我们采用Django框架来创建一个Web界面,用户可以通过这个界面上传眼疾图像,系统将自动识别并返回眼疾的名称。
2024-11-01 15:24:27
1787
1
原创 【植物识别】Python+深度学习+人工智能+CNN卷积神经网络+算法模型训练+TensorFlow
植物识别系统,使用Python作为主要编程语言开发,通过收集常见的6中植物树叶(‘广玉兰’, ‘杜鹃’, ‘梧桐’, ‘樟叶’, ‘芭蕉’, ‘银杏’)图片作为数据集,然后使用TensorFlow搭建ResNet50算法网络模型,通过对数据集进行处理后进行模型迭代训练,得到一个识别精度较高的H5模型文件。并基于Django框架开发网页端平台,实现用户在网页上上传一张植物树叶图片识别其名称。
2024-11-01 15:17:13
1421
原创 【玉米叶部病害识别】Python+深度学习+人工智能+图像识别+CNN卷积神经网络算法+TensorFlow
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集(‘矮花叶病’, ‘健康’, ‘灰斑病一般’, ‘灰斑病严重’, ‘锈病一般’, ‘锈病严重’, ‘叶斑病一般’, ‘叶斑病严重’),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。局部连接。
2024-11-01 15:12:59
1033
原创 【文本情感分析识别】Python+SVM算法+模型训练+文本分类+文本情感分析
使用Python作为开发语言,基于文本数据集(一个积极的xls文本格式和一个消极的xls文本格式文件),使用Word2vec对文本进行处理。通过支持向量机SVM算法训练情绪分类模型。实现对文本消极情感和文本积极情感的识别。并基于Django框架开发网页平台实现对用户的可视化操作和数据存储。支持向量机(Support Vector Machine, SVM)是一种监督学习算法,主要用于分类问题,但也可用于回归分析。SVM的核心思想是在特征空间中找到一个最优的超平面,这个超平面能够最大化地分隔不同类别的数据点。
2024-11-01 15:08:29
787
原创 【新闻文本分类识别】Python+CNN卷积神经网络算法+深度学习+人工智能+机器学习+文本处理
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集(“体育类”, “财经类”, “房产类”, “家居类”, “教育类”, “科技类”, “时尚类”, “时政类”, “游戏类”, “娱乐类”),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
2024-11-01 15:05:02
1890
原创 【海洋生物识别系统】Python+卷积神经网络算法+人工智能项目+深度学习项目+计算机毕设项目+图像识别+TensorFlow+模型训练
海洋生物识别系统。
2024-10-09 20:03:59
1402
原创 【谷物粮食识别系统】Python+卷积神经网络算法+人工智能项目+深度学习项目+计算机课设项目+图像识别+TensorFlow+模型训练+Django网页界面
基于深度学习的图像识别技术在农业领域的应用已日益增长,尤其是在作物和谷物识别方面。随着计算技术的发展和机器学习算法的进步,利用这些技术对农产品进行快速准确的分类和识别,不仅可以提高农业生产的效率,还可以在食品安全和质量控制方面发挥重要作用。本系统通过开发一个基于深度学习的谷物识别系统,该系统采用Python作为主要编程语言,并结合TensorFlow框架构建了基于ResNet50的卷积神经网络模型。
2024-10-09 20:02:02
1265
原创 【表情识别】Python+卷积神经网络算法+人工智能项目+深度学习项目+计算机课设项目+TensorFlow+图像识别+模型训练
基于Python和TensorFlow,开发了一个表情识别系统,该系统利用先进的深度学习技术,通过卷积神经网络模型ResNet50对人脸表情进行识别。该系统主要针对七种基本人脸表情:中性、愤怒、厌恶、恐惧、快乐、悲伤和惊讶,进行分类和识别。这种表情识别技术在人机交互、情绪分析、安全监控等领域具有广泛的应用前景。ResNet50是一种具有50层网络的深度残差网络,因其出色的性能和较低的训练成本,在图像识别任务中广受欢迎。
2024-10-09 19:59:32
1310
原创 【球类识别】Python+卷积神经网络算法+人工智能项目+深度学习项目+计算机毕设项目+TensorFlow+算法模型训练
球类识别系统,本系统使用Python作为主要编程语言,基于TensorFlow搭建ResNet50卷积神经网络算法模型,通过收集 ‘美式足球’, ‘棒球’, ‘篮球’, ‘台球’, ‘保龄球’, ‘板球’, ‘足球’, ‘高尔夫球’, ‘曲棍球’, ‘冰球’, ‘橄榄球’, ‘羽毛球’, ‘乒乓球’, ‘网球’, '排球’等15种常见的球类图像作为数据集,然后进行训练,最终得到一个识别精度较高的模型文件。再使用Django开发Web网页端可视化界面平台,实现用户上传一张球类图片识别其名称。
2024-10-09 19:56:22
835
原创 【食物识别】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+TensorFlow+模型训练+图像识别
食物识别系统。该项目通过构建包含11种常见食物类别(包括’Bread’, ‘Dairy product’, ‘Dessert’, ‘Egg’, ‘Fried food’, ‘Meat’, ‘Noodles-Pasta’, ‘Rice’, ‘Seafood’, ‘Soup’, ‘Vegetable-Fruit’)的图片数据集,并利用TensorFlow框架下的ResNet50神经网络模型进行开发。项目流程包括数据预处理和模型训练,最终生成一个高精度的H5模型文件用于识别。
2024-10-09 19:55:12
1512
原创 【中草药识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+算法模型+机器学习+TensorFlow
中草药识别系统。本系统基于TensorFlow搭建卷积神经网络算法(ResNet50算法)通过对10中常见的中草药图片数据集(‘丹参’, ‘五味子’, ‘山茱萸’, ‘柴胡’, ‘桔梗’, ‘牡丹皮’, ‘连翘’, ‘金银花’, ‘黄姜’, ‘黄芩’)进行训练,得到一个识别精度较高的H5格式模型文件,然后基于Django开发可视化的Web网页操作界面,实现用户上传一张图片识别其名称。TensorFlow是一个由Google开发的开源机器学习库,广泛应用于各种人工智能领域,特别是在图像识别技术方面表现出色。
2024-10-09 19:32:13
1871
1
原创 【果蔬识别系统】计算机毕设案例+Python人工智能+深度学习+算法模型+Django网页界面
果蔬识别系统,本系统使用Python作为主要开发语言,通过收集了12种常见的水果和蔬菜(‘土豆’, ‘圣女果’, ‘大白菜’, ‘大葱’, ‘梨’, ‘胡萝卜’, ‘芒果’, ‘苹果’, ‘西红柿’, ‘韭菜’, ‘香蕉’, ‘黄瓜’),然后基于TensorFlow库搭建CNN卷积神经网络算法模型,然后对数据集进行训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地文件方便后期调用。再使用Django框架搭建Web网页平台操作界面,实现用户上传一张果蔬图片识别其名称。
2024-09-27 20:12:14
831
原创 【新闻文本分类识别系统】计算机毕设案例+卷积神经网络算法+人工智能+深度学习+Django网页界面+模型训练
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集(“体育类”, “财经类”, “房产类”, “家居类”, “教育类”, “科技类”, “时尚类”, “时政类”, “游戏类”, “娱乐类”),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
2024-09-27 20:02:45
675
原创 【水果识别系统】计算机毕设案例+卷积神经网络算法+人工智能+深度学习+Django网页界面+模型训练
水果识别系统。本项目使用Python作为主要编程语言,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的5种常见的水果(圣女果、梨、芒果、苹果、香蕉)等图片数据集进行训练,最终得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端操作界面,实现用户上传一张水果图片识别其名称。在本项目中,基于人工智能和深度学习的水果识别系统旨在实现对常见水果的自动识别。
2024-09-27 19:55:46
681
原创 【垃圾识别系统】计算机毕设案例+卷积神经网络算法+人工智能+深度学习+Django网页界面+模型训练
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集(‘塑料’, ‘玻璃’, ‘纸张’, ‘纸板’, ‘金属’),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。随着环境问题日益严重,垃圾分类成为解决废物处理问题的重要措施之一。为了提高垃圾分类效率并减少人力成本,智能垃圾分类系统的需求逐渐增大。
2024-09-27 19:49:10
672
原创 【花朵识别系统】计算机毕设案例+卷积神经网络算法+人工智能+深度学习+Django网页界面
花朵识别系统。本系统采用Python作为主要编程语言,基于TensorFlow搭建ResNet50卷积神经网络算法模型,并基于前期收集到的5种常见的花朵数据集(向日葵、玫瑰、蒲公英、郁金香、菊花)进行处理后进行模型训练,最后得到一个识别精度较高的模型,然后保存为本地的h5格式文件,便于后续调用使用。在可视化操作界面开发中使用Django开发Web网页操作界面,实现用户上传一张花朵图片识别其名称。在本项目中,我们设计并实现了一个基于人工智能技术的花朵识别系统。
2024-09-26 18:22:04
942
原创 【交通标志识别系统】计算机毕设案例+卷积神经网络算法+人工智能+深度学习+模型训练+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。在本项目中,开发了一个基于人工智能的交通标志识别系统,旨在利用深度学习技术对常见的交通标志进行高效、准确的识别。
2024-09-26 18:03:16
976
原创 【植物病害识别】计算机毕设项目案例+Python卷积神经网络算法+人工智能+深度学习+模型训练
植物病害识别系统。本系统使用Python作为主要编程语言,通过收集水稻常见的四种叶片病害图片(‘细菌性叶枯病’, ‘稻瘟病’, ‘褐斑病’, ‘稻瘟条纹病毒病’)作为后面模型训练用到的数据集。然后使用TensorFlow搭建卷积神经网络算法模型,并进行多轮迭代训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地模型文件。再使用Django搭建Web网页平台操作界面,实现用户上传一张测试图片识别其名称。
2024-09-26 17:57:46
919
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅