为什么优先在别人发表的论文中寻找指标呢?
因为:显得专业。
另外,别人研究使用的方法你也可以进行合理借鉴
假如你没找到相关的文献怎么办?
和小组成员来场头脑风暴 + 在平台上搜索别人或者专家的看法
强烈推荐一个很厉害的网站——虫部落‐快搜 : https://search.chongbuluo.com/
还可以去以下地方搜索:谷歌、百度、微信搜索、知乎搜索……
举例子:
现在小明纠结去苏杭、去北戴河还是去桂林旅游,我们要为他分析出最佳目的地,评价的准则或者说指标是:景色、花费、居住、饮食、交通。
关键是填好这张权重表格。
注意:在确定影响某因素的诸因子在该因素中所占的比重时,遇到的主要困难是这些比重常常不易定量化。此外,当影响某因素的因子较多时,直接考虑各因子对该因素有多大程度的影响时,常常会因考虑不周全、顾此失彼而使决策者提出与他实际认为的重要性程度不相一致的数据,甚至有可能提出一组隐含矛盾的数据。
——选自司守奎[kuí]老师的《数学建模算法与应用》
那么如何考虑它们的权重呢?我们决定用分而治之的方法。
问题:
一次性考虑这五个指标之间的关系,往往考虑不周。
解决方法:
两个两个指标进行比较,最终根据两两比较的结果来推算出权重如果用下表表示重要程度,请两两比较上述这五个指标对于选择最终的旅游景点的重要性。
(注:这里的重要性有时候解释为满意度更方便理解)
逐一进行了两两比较后,得出了这样一张表,其中蕴含了某种规律,请仔细想想哦。
总结:上面这个表是一个5×5的方阵,我们记为A,对应的元素为𝑎ij .
这个方阵有如下特点:
(1)𝑎ij表示的意义是,与指标𝑗相比,𝑖的重要程度。
(2)当𝑖=𝑗时,两个指标相同,因此同等重要记为1,这就解释了主对角线元素为1。
(3)𝑎ij>0且满足𝑎ij×𝑎ji=1 (我们称满足这一条件的矩阵为正互反矩阵)实际上,上面这个矩阵就是层次分析法中的判断矩阵。
得到了判断矩阵,就可以计算出权重了。具体方法我们稍后再讲。
下面说说一致矩阵:
一致矩阵的例子:
观察上面这两个矩阵的特点:各行(各列)之间成倍数关系。
若矩阵中每个元素𝑎ij>0且满足𝑎ij × 𝑎ji = 1 ,则我们称该矩阵为正互反矩阵。
在层次分析法中,我们构造的判断矩阵均是正互反矩阵。若正互反矩阵满足𝑎ij × 𝑎jk = 𝑎ik ,则我们称其为一致矩阵。注意:在使用判断矩阵求权重之前,必须对其进行一致性检验。
那怎么进行一致性检验呢?
原理:检验我们构造的判断矩阵和一致矩阵是否有太大的差别。
下面需要用到线性代数的知识,没学过的朋友可以忽略掉证明过程,只需要了解如何计算即可。
若正互反矩阵(判断矩阵)满足aij × ajk = aik,则我们称其为一致矩阵。
判断矩阵越不一致时,最大特征值与n相差就越大。
进行一致性检验的步骤:
第一步:计算一致性指标CI
第二步ÿ