语音分离任务中常用的数据集有多个,包括但不限于以下几种:
- WSJ0数据集:这是一个在语音分离领域广泛使用的数据集,特别是在单通道语音分离任务中。它包含了华尔街日报的新闻语音数据,经常被用来测试和评估语音分离算法的性能。
- Librispeech数据集:这是一个大型的英语语音数据集,包含了约1000小时的语音数据,主要用于语音识别任务,但也可以用于语音分离等任务的研究。
- LibriMix数据集:这是基于Librispeech数据集的一个扩展,专门设计用于语音分离任务。它包含了两个说话人的子集Libri2Mix和三个说话人的子集Libri3Mix,这些数据集中的语音样本混合了不同说话人的声音,以模拟真实的语音分离场景。
- DIHARD数据集:这是一个具有挑战性的数据集,包含了多种场景、多种语言和多个说话人的语音数据。它旨在评估说话人角色分离算法在复杂环境中的性能。
- AVSpeech数据集:这是一个音视频数据集,包含了不同人种、不同语言和不同表情姿态的说话人语音和视频数据。尽管它主要用于音视频相关的研究,但也可以用于语音分离任务的辅助研究。
这些数据集为研究人员提供了丰富的语音数据资源,以便他们开发和评估不同的语音分离算法和技术。请注意,具体使用哪个数据集取决于研究目标、算法设计和实验需求。同时,使用这些数据集时应遵守相关的版权和使用协议。
除了上述提到的数据集外,还有其他一些数据集也常用于语音分离任务的研究,如TIMIT、CHiME等。研究人员可以根据自己的需求选择合适的数据集进行实验和研究。