- 博客(6)
- 收藏
- 关注
原创 Datawhale X 魔搭 AI夏令营(第四期)AIGC方向 学习笔记Task03
先介绍下什么是ComfyUI,它是GUI的一种,主要用于生成图片,它由模型加载器、提示词管理器、采样器、解码器组成,且生成流程有四步:选择模型、构建工作流、执行生成和调整与优化。这次task3任务对我来说是有新的挑战的,间接使用GUI的comfyUI,学会了对我个人也是有不错的提升,可以更好地在这方面继续学习下去。
2024-08-16 19:17:23 253
原创 Datawhale X 魔搭 AI夏令营(第四期)AIGC方向 学习笔记Task02
完成这一步之后,其实task2的任务就结束了,后面的scepter webui的尝试部分我还不太熟悉,便不打算做下去,总体来说,task2让我更加深入的了解了AIGC,也了解到通义千问的这么一个大模型,总之就是学到了很多,当然也要在接下来的任务中继续加油!task2的学习手册很清楚地分析了上述代码的各部分作用以及如何处理的操作等,在学习完之后整个人都会有提升,能够摸索出一些知识点的运用,而且不清楚的还可以像其他学者一起交流,共同进步。本次任务二的主题是精读代码,实战进阶。
2024-08-12 16:36:07 206
原创 Datawhale X 魔搭 AI夏令营(第四期)AIGC方向 学习笔记Task01
本次任务是学习文生图的工作原理,熟悉需要使用魔塔和阿里云的一些操作以及体验AI生成图,总得来说,按照教程来完成并无大碍,如果有什么问题可以大家一起讨论讨论,我们一起进步,最后别忘记关闭实例哦,期待下一次的学习。
2024-08-08 17:24:38 323
原创 从零入门 AI+逻辑推理 2024Datawhale AI夏令营第三期 学习笔记3
本次task3,总的来说和task1很像,都是运行代码,也就是实操训练,在这次的学习中,我发现自己还有很多的不足,比如有时操作不当,粗心大意,这需要改正,望和各位一起在接下来的学习中继续提升自己。微调对本次赛道在很大程度上是有所帮助的,它对原本的大模型来说,上下文的理解提升了,性能也优化了,数据需求大幅减少,使得适应性大大增强了。本次任务是学习baseline2的微调操作,完成微调任务,使用vllm加速推理和微调的模型进行多路投票,得到更好的结果。原理是通过三次结果推理,将选择答案最多的结果作为最终结果。
2024-08-01 18:52:00 347
原创 从零入门 AI+逻辑推理 2024Datawhale AI夏令营第三期 学习笔记2
现在大语言模型推理使用的方法是提示工程,提示工程是一种关注提示词开发和优化,帮助用户将大语言模型用于各个场景的学科,使用提示工程来进行大模型推理是一个不错的选择,毕竟提示工程在实现和大语言模型交互、对接,以及理解大语言模型能力方面都起着不可或缺的作用。主要代码分为环境配置、答案生成和纠错与结果文件的生成三部分,运用的都是python的一些基本知识和库,如果学过的,有python基础的,你会发现这些语法并不难看懂,最难也就是库的运用与库函数调用这方面,不懂的话就根据注释来理解也行。最后是启动答案的生成。
2024-07-30 18:57:01 281
原创 从零入门 AI+逻辑推理 2024Datawhale AI夏令营第三期 学习笔记1
本次代码实验我感觉与其他人绝对不一样,因为我跑了五个小时才出结果,也许是模型的问题,总之体会就是慢且不好用,通过这次的学习,我希望下次能够学到真正有用的东西,和大家一起共勉。运行代码,等约30分钟,运行完成后会出现一个需要下载的upload.jsonl,最后提交到报名的赛道那边,那边会有一个提交结果,完成后会出一个预期在0.66上下的成绩。,注册完成直接点击启动,启动完成会有查看Notebook的按钮,再次点击,进入环境,便可编写代码了。完成最后的任务即打卡,上传成绩,还有群接龙。最后进行注册报名就行。
2024-07-26 00:23:43 331
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人