int:表示整型变量或函数
%d:表示十进制整数
printf:输出信息
scanf:输入函数,把数据变成指定的格式
&:输入的地址
a&b:表示按位置进行与运算
float:浮点型数据,就是小数,,,float标注的用%f,int标注的用%d
%f:表述小数型代数,%f所代表的数,输入整数系统也会把这个整数当浮点数看
char:字符型数据
%c:表示字符型代数
=:表示赋值
==:表示等于
!=:表示不等于
!:表示非,!0意思就是非零
&&:表示与
ll:表示或
i++:表示先取i的值再i=i+1
++i:表示先i=i+1再取i的值
pow(a,b):表示a的b次方 //这是数学符号,需要些#include<math.h>
sqrt(a):a的根
if( ) else:
while( ):循环函数,满足条件进入循环,不满足条件跳出
double:双精度浮点型 ,%lf
fabs( ):取绝对值
1e-6:是0.000001有6个零,C语言中看作0
sqrt( ):计算非负实数的平方根
%8.4f:浮点数格式,占8个字符宽度(八位数包括第一个空格和小数点)保留4位小数(小数点后四位)
switch(表达式):表示多个条件时使用,case 1,case 2,case 3.........,
break:跳出的意思,用于循环和switch结构,没有break就会继续执行下去
case 常量::表达式=常量
取整数部分:a=12.45,int a
取小数部分:a=12.45,b=(int)a,c=a-b
x+=y:x=x+y
1.while(表达式):循环语句,只要表达式为真就执行循环语句
{ 循环语句(循环体)
} 先判断条件再执行
2.do......while:do 先执行后判断条件
{ 循环语句(循环体)
}while(表达式):表达式为真继续循环,为假输出
3.for(表达式1;表达式2;表达式3):表达式1只在第一次循环使用(相当于是赋值),表示式2相当 语句块 于是循环条件,表达式3相当于是循环变量增量,第一次执行 表达式1,表达式2,语句块,表达式3,第二次执行表达式2, 语句块,表达式3(表达式1和3可有可无,但是;必须有,表 达式1和3可以是写不止一个表达式其间用逗号隔开)
循环嵌套:就是外层判断循环条件,满足进入外层循环体,外层循环体的那个数据在内层判断循环条件,进入内层循环体,内层循环完回到外层,外层循环变量累加,又进入内层循环
continue:跳过本次循环体中余下尚未执行的语句,立即进行下一次的循环条件判定(即看到continue直接返回初始循环点,后面不管)
continue与break的区别:continue只是终止这一次循环,而break是直接跳出不循环了
字符串和字符数组:china是字符串,i am boy是字符串,c[ ]:是字符数组
1.puts(字符数组)(输出字符串的函数):将一个字符串输出到终端
2.gets(字符数组)(输入字符串的函数):输入一个字符串到字符数组,字符串结束标志也存放在字符数组里
3.strcat(字符数组1,字符数组2)(字符串连接函数):连接两个字符数组中的字符串,把字符串2接到字符串1后面,把得到的结果放到字符数组1中,字符数组1必须足够大,以便容纳2
char str1[ ]
char str2[ ]
printf("%s",strcat(str1,str2))
4.strcpy(字符数组1,字符数组2)(字符串复制函数):将字符串2复制到字符数组1中,字符数组1必须足够大,不能用赋值号==来表示
5.strncpy(字符数组1,字符数组2,n)(字符串复制函数):将字符串2前面的n个字符复制到字符数组1中,n不能多余str1的长度
6.strcmp(字符串1,字符串2)(字符串比较函数):比较字符串1和字符串2,自左向右逐个字符相比(按ASCII码值大小比较),完全相同函数值为0,字符串1大于字符串2,函数值为正整数,反之为负整数(不能用str1>str2,因为str代表地址,不代表数组中国的全部元素,用(strcmp(str1,str2)>0)来表示)
7.strlen(字符数组)(测字符串长度的函数):函数的值为字符串中的实际长度(不包含\0在内)
8.strlwr(字符串)(转换为大小写的函数):将字符串中的大写转换成小写
9.strupr(字符串)(转换为大小写的函数):将字符串中的小写字母转换成大写
!!以上九个为库函数,使用这些函数前需要头文件#include<string.h>
无参函数:
类型名 函数名() 类型名 函数名(void)
{ 或者 {
函数体 函数体
} }
此函数不能有数代进去,一般无参函数的函数体为printf()
有参函数:
类型名 函数名(形式参数列表) int max(int a,int b)
{ {
函数体 例如 函数体
} }
当你感到迷茫时,不要慌张,也许是在走上坡路!!!