作形式记号:
I
n
=
∫
arctan
x
(
1
+
x
2
)
n
I_n=\int\frac{\arctan x}{(1+x^2)^n}
In=∫(1+x2)narctanx其中,规定的
n
∈
Z
>
0
n\in Z_{>0}
n∈Z>0
注意到
d
d
x
x
arctan
x
(
1
+
x
2
)
n
\frac{d}{dx}\frac{x \arctan x}{(1+x^2)^n}
dxd(1+x2)nxarctanx
=
arctan
x
(
1
+
x
2
)
n
+
x
(
1
+
x
2
)
n
+
1
−
2
n
x
3
arctan
x
(
1
+
x
2
)
n
+
1
=\frac{\arctan x}{(1+x^2)^n}+\frac{x}{(1+x^2)^{n+1}}-2n\frac{x^3\arctan x}{(1+x^2)^{n+1}}
=(1+x2)narctanx+(1+x2)n+1x−2n(1+x2)n+1x3arctanx
=
a
r
c
t
a
n
x
(
1
+
x
2
)
n
+
x
(
1
+
x
2
)
n
+
1
−
2
n
(
1
+
x
2
−
1
)
arctan
x
(
1
+
x
2
)
n
+
1
=\frac{arctanx}{(1+x^2)^n}+\frac{x}{(1+x^2)^{n+1}}-2n\frac{(1+x^2-1)\arctan x}{(1+x^2)^{n+1}}
=(1+x2)narctanx+(1+x2)n+1x−2n(1+x2)n+1(1+x2−1)arctanx
=
2
n
arctan
x
(
1
+
x
2
)
n
+
1
−
(
2
n
−
1
)
arctan
x
(
1
+
x
2
)
n
+
x
(
1
+
x
2
)
n
+
1
=2n\frac{\arctan x}{(1+x^2)^{n+1}}-(2n-1)\frac{\arctan x}{(1+x^2)^n}+\frac{x}{(1+x^2)^{n+1}}
=2n(1+x2)n+1arctanx−(2n−1)(1+x2)narctanx+(1+x2)n+1x
以及:
d
d
x
1
(
1
+
x
2
)
n
=
−
2
n
x
(
1
+
x
2
)
n
+
1
\frac{d}{dx}\frac{1}{(1+x^2)^n}=-2n\frac{x}{(1+x^2)^{n+1}}
dxd(1+x2)n1=−2n(1+x2)n+1x
可得:
d
d
x
(
x
arctan
x
(
1
+
x
2
)
n
+
1
2
n
(
1
+
x
2
)
n
\frac{d}{dx}(\frac{x \arctan x}{(1+x^2)^n}+\frac{1}{2n(1+x^2)^n}
dxd((1+x2)nxarctanx+2n(1+x2)n1
2
n
arctan
x
(
1
+
x
2
)
n
+
1
−
(
2
n
−
1
)
arctan
x
(
1
+
x
2
)
n
2n\frac{\arctan x}{(1+x^2)^{n+1}}-(2n-1)\frac{\arctan x}{(1+x^2)^n}
2n(1+x2)n+1arctanx−(2n−1)(1+x2)narctanx
两边积分可得
I
n
I_n
In的递推关系:
2
n
I
n
+
1
−
(
2
n
−
1
)
I
n
=
x
arctan
x
(
1
+
x
2
)
n
+
1
2
n
(
1
+
x
2
)
n
2nI_{n+1}-(2n-1)I_n=\frac{x \arctan x}{(1+x^2)^n}+\frac{1}{2n(1+x^2)^n}
2nIn+1−(2n−1)In=(1+x2)nxarctanx+2n(1+x2)n1
记
F
n
=
x
arctan
x
(
1
+
x
2
)
n
+
1
2
n
(
1
+
x
2
)
n
F_n=\frac{x \arctan x}{(1+x^2)^n}+\frac{1}{2n(1+x^2)^n}
Fn=(1+x2)nxarctanx+2n(1+x2)n1
等号两边乘以
2
n
−
1
(
n
−
1
)
!
2^{n-1}(n-1)!
2n−1(n−1)!又除以二
(
2
n
−
1
)
!
!
(2n-1)!!
(2n−1)!!并移项得:
2
n
n
!
(
2
n
−
1
)
!
!
I
n
+
1
=
2
n
−
1
(
n
−
1
)
!
(
2
n
−
3
)
!
!
I
n
+
2
n
−
1
(
n
−
1
)
!
(
2
n
−
1
)
!
!
F
n
\frac{2^nn!}{(2n-1)!!}I_{n+1}=\frac{2_{n-1}(n-1)!}{(2n-3)!!}I_n+\frac{2^{n-1}(n-1)!}{(2n-1)!!}F_n
(2n−1)!!2nn!In+1=(2n−3)!!2n−1(n−1)!In+(2n−1)!!2n−1(n−1)!Fn
上式推到
I
0
,
1
I_{0,1}
I0,1可得
2
n
n
!
(
2
n
−
1
)
!
!
I
n
+
1
=
I
1
+
∑
k
=
1
n
2
n
−
k
(
n
−
k
)
!
(
2
n
−
2
k
+
1
)
!
!
F
n
−
k
+
1
\frac{2^nn!}{(2n-1)!!}I_{n+1}=I_1+\sum_{k=1}^n\frac{2^{n-k}(n-k)!}{(2n-2k+1)!!F_{n-k+1}}
(2n−1)!!2nn!In+1=I1+∑k=1n(2n−2k+1)!!Fn−k+12n−k(n−k)!
=
I
1
+
∑
k
=
0
n
−
1
2
k
k
!
(
2
k
+
1
)
!
!
F
k
+
1
=I_1+\sum_{k=0}^{n-1}\frac{2^kk!}{(2k+1)!!}F_{k+1}
=I1+∑k=0n−1(2k+1)!!2kk!Fk+1
其中
I
1
=
∫
arctan
x
1
+
x
2
d
x
=
1
2
arctan
2
x
I_1=\int\frac{\arctan x}{1+x^2}dx=\frac{1}{2}\arctan^2 x
I1=∫1+x2arctanxdx=21arctan2x
因此得到了
I
n
=
(
2
n
−
3
)
!
!
2
n
(
n
−
1
)
!
(
arctan
2
x
+
∑
k
=
1
n
−
1
2
k
(
k
−
1
)
!
(
2
k
−
1
)
!
!
F
k
)
(
n
≥
1
)
I_n=\frac{(2n-3)!!}{2^n(n-1)!}(\arctan^2 x+\sum_{k=1}^{n-1}\frac{2^k(k-1)!}{(2k-1)!!}F_k)(n\geq1)
In=2n(n−1)!(2n−3)!!(arctan2x+∑k=1n−1(2k−1)!!2k(k−1)!Fk)(n≥1)