一个递推函数积分的求解

作形式记号: I n = ∫ arctan ⁡ x ( 1 + x 2 ) n I_n=\int\frac{\arctan x}{(1+x^2)^n} In=(1+x2)narctanx其中,规定的 n ∈ Z > 0 n\in Z_{>0} nZ>0
注意到
d d x x arctan ⁡ x ( 1 + x 2 ) n \frac{d}{dx}\frac{x \arctan x}{(1+x^2)^n} dxd(1+x2)nxarctanx
= arctan ⁡ x ( 1 + x 2 ) n + x ( 1 + x 2 ) n + 1 − 2 n x 3 arctan ⁡ x ( 1 + x 2 ) n + 1 =\frac{\arctan x}{(1+x^2)^n}+\frac{x}{(1+x^2)^{n+1}}-2n\frac{x^3\arctan x}{(1+x^2)^{n+1}} =(1+x2)narctanx+(1+x2)n+1x2n(1+x2)n+1x3arctanx
= a r c t a n x ( 1 + x 2 ) n + x ( 1 + x 2 ) n + 1 − 2 n ( 1 + x 2 − 1 ) arctan ⁡ x ( 1 + x 2 ) n + 1 =\frac{arctanx}{(1+x^2)^n}+\frac{x}{(1+x^2)^{n+1}}-2n\frac{(1+x^2-1)\arctan x}{(1+x^2)^{n+1}} =(1+x2)narctanx+(1+x2)n+1x2n(1+x2)n+1(1+x21)arctanx
= 2 n arctan ⁡ x ( 1 + x 2 ) n + 1 − ( 2 n − 1 ) arctan ⁡ x ( 1 + x 2 ) n + x ( 1 + x 2 ) n + 1 =2n\frac{\arctan x}{(1+x^2)^{n+1}}-(2n-1)\frac{\arctan x}{(1+x^2)^n}+\frac{x}{(1+x^2)^{n+1}} =2n(1+x2)n+1arctanx(2n1)(1+x2)narctanx+(1+x2)n+1x
以及: d d x 1 ( 1 + x 2 ) n = − 2 n x ( 1 + x 2 ) n + 1 \frac{d}{dx}\frac{1}{(1+x^2)^n}=-2n\frac{x}{(1+x^2)^{n+1}} dxd(1+x2)n1=2n(1+x2)n+1x
可得: d d x ( x arctan ⁡ x ( 1 + x 2 ) n + 1 2 n ( 1 + x 2 ) n \frac{d}{dx}(\frac{x \arctan x}{(1+x^2)^n}+\frac{1}{2n(1+x^2)^n} dxd((1+x2)nxarctanx+2n(1+x2)n1
2 n arctan ⁡ x ( 1 + x 2 ) n + 1 − ( 2 n − 1 ) arctan ⁡ x ( 1 + x 2 ) n 2n\frac{\arctan x}{(1+x^2)^{n+1}}-(2n-1)\frac{\arctan x}{(1+x^2)^n} 2n(1+x2)n+1arctanx(2n1)(1+x2)narctanx
两边积分可得 I n I_n In的递推关系:
2 n I n + 1 − ( 2 n − 1 ) I n = x arctan ⁡ x ( 1 + x 2 ) n + 1 2 n ( 1 + x 2 ) n 2nI_{n+1}-(2n-1)I_n=\frac{x \arctan x}{(1+x^2)^n}+\frac{1}{2n(1+x^2)^n} 2nIn+1(2n1)In=(1+x2)nxarctanx+2n(1+x2)n1
F n = x arctan ⁡ x ( 1 + x 2 ) n + 1 2 n ( 1 + x 2 ) n F_n=\frac{x \arctan x}{(1+x^2)^n}+\frac{1}{2n(1+x^2)^n} Fn=(1+x2)nxarctanx+2n(1+x2)n1
等号两边乘以 2 n − 1 ( n − 1 ) ! 2^{n-1}(n-1)! 2n1(n1)!又除以二 ( 2 n − 1 ) ! ! (2n-1)!! (2n1)!!并移项得:
2 n n ! ( 2 n − 1 ) ! ! I n + 1 = 2 n − 1 ( n − 1 ) ! ( 2 n − 3 ) ! ! I n + 2 n − 1 ( n − 1 ) ! ( 2 n − 1 ) ! ! F n \frac{2^nn!}{(2n-1)!!}I_{n+1}=\frac{2_{n-1}(n-1)!}{(2n-3)!!}I_n+\frac{2^{n-1}(n-1)!}{(2n-1)!!}F_n (2n1)!!2nn!In+1=(2n3)!!2n1(n1)!In+(2n1)!!2n1(n1)!Fn
上式推到 I 0 , 1 I_{0,1} I0,1可得
2 n n ! ( 2 n − 1 ) ! ! I n + 1 = I 1 + ∑ k = 1 n 2 n − k ( n − k ) ! ( 2 n − 2 k + 1 ) ! ! F n − k + 1 \frac{2^nn!}{(2n-1)!!}I_{n+1}=I_1+\sum_{k=1}^n\frac{2^{n-k}(n-k)!}{(2n-2k+1)!!F_{n-k+1}} (2n1)!!2nn!In+1=I1+k=1n(2n2k+1)!!Fnk+12nk(nk)!
= I 1 + ∑ k = 0 n − 1 2 k k ! ( 2 k + 1 ) ! ! F k + 1 =I_1+\sum_{k=0}^{n-1}\frac{2^kk!}{(2k+1)!!}F_{k+1} =I1+k=0n1(2k+1)!!2kk!Fk+1
其中 I 1 = ∫ arctan ⁡ x 1 + x 2 d x = 1 2 arctan ⁡ 2 x I_1=\int\frac{\arctan x}{1+x^2}dx=\frac{1}{2}\arctan^2 x I1=1+x2arctanxdx=21arctan2x
因此得到了 I n = ( 2 n − 3 ) ! ! 2 n ( n − 1 ) ! ( arctan ⁡ 2 x + ∑ k = 1 n − 1 2 k ( k − 1 ) ! ( 2 k − 1 ) ! ! F k ) ( n ≥ 1 ) I_n=\frac{(2n-3)!!}{2^n(n-1)!}(\arctan^2 x+\sum_{k=1}^{n-1}\frac{2^k(k-1)!}{(2k-1)!!}F_k)(n\geq1) In=2n(n1)!(2n3)!!(arctan2x+k=1n1(2k1)!!2k(k1)!Fk)(n1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值