动态规划-简单多状态dp问题 – 买卖股票的最佳时机含手续费
题目重现
给定一个整数数组
prices
,其中prices[i]
表示第i
天的股票价格 ;整数fee
代表了交易股票的手续费用。你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。
返回获得利润的最大值。
注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。
示例 1:
输入:prices = [1, 3, 2, 8, 4, 9], fee = 2 输出:8 解释:能够达到的最大利润: 在此处买入 prices[0] = 1 在此处卖出 prices[3] = 8 在此处买入 prices[4] = 4 在此处卖出 prices[5] = 9 总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8
示例 2:
输入:prices = [1,3,7,5,10,3], fee = 3 输出:6
读懂题目
根据题目描述可知,第 i 天买入后,第 i - 1 天可直接卖出,没有冷冻期。同时可交易次数为无限次,每轮完整的交易需要支付一次手续费,所以我们可以任选将手续费扣费的过程融合在买入或卖出股票的两种情况之一。不妨下面思路解析部分就设定为卖出时需要支付手续费
算法流程
1.状态表示
根据经验+题目要求的方法,定义状态表示为:
- dp[i]:第 i 天结束后,此时的最大利润
但是由于每天都有 “买入” 和 “可卖出” 两种状态,所以我们将 dp[i] 分为两种情况,其中:
- f[i]:第 i 天结束后,处于 “已买入” 状态,此时的最大利润;
- g[i]:第 i 天结束后,处于 “可卖出” 状态,此时的最大利润。
2.状态转移方程
对于 f[i] 有两种情况可以到达该状态:
① 在 i - 1 天 “持有” 股票,但是第 i 天未将其卖出,所以收益为 f[i - 1]
② 在 i - 1 天的时候手头没有股票,但在第 i 天买入股票。此时最大收益为 g[i - 1] - prices[i]
根据 f[i] 的状态表示,此时应该取两者的最大值,因此 f[i] = max (f[i - 1], g[i - 1] - prices[i])
对于 g[i] 也有两种情况:
① 在 i - 1 天手头没有股票,然后第 i 天什么也不干,收益为 g[i - 1]
② 在 i - 1 天未 “持有” 股票,但在第 i 天卖出股票,同时需要考虑手续费,所以收益为 f[i - 1] + prices[i] - fee
根据 g[i] 的状态表示,此时应该取两者的最大值,因此 g[i] = max (g[i - 1], f[i - 1] + prices[i] - fee)
3.初始化
由于需要用到前面的状态,因此需要初始化第一个位置。
- f[0] = -price[0];
- g[0] = 0
4.填表顺序
从左往右,两表同填
5.返回值
应该返回「卖出」状态下,最后一天的最大值收益:g[n - 1]
示例代码
class Solution {
public:
int maxProfit(vector<int>& prices, int fee) {
const int n = prices.size();
if(n == 1) { return 0; }
vector<int> f(n, 0);
auto g = f;
f[0] = -prices[0];
for(int i = 1; i < n; i++)
{
f[i] = max(f[i - 1], g[i - 1] - prices[i]); // 保持持有或昨日买入 -> 今日状态为已买入
g[i] = max(g[i - 1], f[i - 1] + prices[i] - fee); // 保持已售出(可买入),或昨日已卖出 -> 今日状态为已卖出
}
return g[n - 1];
}
};
提交结果: