目录
递归:
在解决一个规模为n的问题时,如果满足以下条件,我们可以使用递归来解决
- 问题可以被划分为规模更小的子问题,并且这些子问题具有与原问题相同的解决办法
- 当我们知道规模更小的子问题(规模为n-1)的解时,我们可以直接计算出规模为n的问题的解。
- 存在一种简单情况,或者说当问题的规模足够小时,我们可以直接求解问题。
一般的递归求解过程如下:
- 验证是否满足简单情况
- 假设较小规模的问题已经解决,解决当前问题。
如何写好一个递归
- 先找到相同的子问题->函数头的设计
- 只关心某一个子问题时如何解决的->函数体的书写
- 注意一下递归函数的出口--就是关心递归的结束条件
1.题目链接:面试题08.06.汉诺塔问题
1.2题目描述:
在经典汉诺塔问题中,有 3 根柱子及 N 个不同大小的穿孔圆盘,盘子可以滑入任意一根柱子。一开始,所有盘子自上而下按升序依次套在第一根柱子上(即每一个盘子只能放在更大的盘子上面)。移动圆盘时受到以下限制:
(1) 每次只能移动一个盘子;
(2) 盘子只能从柱子顶端滑出移到下一根柱子;
(3) 盘子只能叠在比它大的盘子上。
请编写程序,用栈将所有盘子从第一根柱子移到最后一根柱子。
你需要原地修改栈。
示例 1:
输入:A = [2, 1, 0], B = [], C = [] 输出:C = [2, 1, 0]
示例 2:
输入:A = [1, 0], B = [], C = [] 输出:C = [1, 0]
提示:
- A 中盘子的数目不大于 14 个。
1.3解法(递归)
算法思路:
假设n = 1,只有一个盘子,很简单,直接把它从A中拿出来,移到C上;如果n = 2呢?这时候我们就要借助B了,因为小盘子必须时刻都在大盘子上面,共需要3步(为了方便叙述,记A中的盘子从上到下为1号,2号):
- 1号盘子放到B上;
- 2号盘子放到C上;
- 1号盘子放到C上;
至此,C中的盘子从上到下为1号,2号
如果n>2呢?这时我们需要用到n=2时的策略,将A上面除了最大的盘子,其余挪到B上,再将最大的盘子挪到C上,最后将B上的小盘子挪到C上就完成了所有步骤。
因为A中最后处理的是最大的盘子,所以在移动过过程中不存在大盘子在小盘子上面的情况。则本题可以被解释为:
- 对于规模为n的问题,我们需要将A柱上的n个盘子移动到C柱上
- 规模为n的问题可以被拆分为规模为n-1的子问题: a.将A柱上的上面n-1个盘子移动到B柱上; b.将A柱上最大的盘子移动到C柱上,然后将B柱上的n-1个盘子移动到C柱上。
- 当问题的规模变为n=1时,即只有一个盘子时,我们可以直接将其从A柱移动到C柱。
需要注意的是,步骤2.b考虑的是总体问题中的子问题b情况。在处理子问题时,我们应该将A柱中的最上面的盘子移动C柱,然后再将B柱上的盘子移动到C柱。在处理总体问题的子问题b时,A柱中的最大盘子仍然时最上面的盘子,因此这种做法时通用的。
1.4算法流程:
递归函数设计:void hanotaa(vector<int>& a, vector<int>& b, vector<int>& c,int n)
- 返回值:无;
- 参数:三个柱子上的盘子,当前需要处理的盘子个数(当前问题规模)。
- 函数作用:将a中的上面n个盘子挪到c中。
递归函数流程:
- 当前问题规模为n=1时,直接将a中的最上面的盘子挪到c中并返回;
- 递归将a中最上面的n-1个盘子挪到b中;
- 将a中最上面的一个盘子挪到c中;
- 将b中上面n-1个盘子挪到c中。
class Solution {
public:
void hanota(vector<int>& a, vector<int>& b, vector<int>& c) {
hannotaa(a,b,c,a.size());
}
void hannotaa(vector<int>& a, vector<int>& b, vector<int>& c,int num)
{
if(num == 1)
{
c.push_back(a.back());
a.pop_back();
return;
}
hannotaa(a,c,b,num-1);//a借助c放到b;
c.push_back(a.back());
a.pop_back();
hannotaa(b,a,c,num-1);//b再将剩余的借助a放到b
}
};
2.题目链接:21.合并两个有序链表
2.2题目描述:
将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。
示例 1:
输入:l1 = [1,2,4], l2 = [1,3,4] 输出:[1,1,2,3,4,4]
示例 2:
输入:l1 = [], l2 = [] 输出:[]
示例 3:
输入:l1 = [], l2 = [0] 输出:[0]
提示:
- 两个链表的节点数目范围是
[0, 50]
-100 <= Node.val <= 100
l1
和l2
均按 非递减顺序 排列
2.3解法
算法思路:
- 递归函数的含义:交给你两个链表的头节点,你帮我把它们合并起来,并且返回合并后的头节点
- 函数体:选择两个头节点中较小的结点作为最终合并后的头节点,然后将剩下的链表交给递归函数去处理;
- 递归出口:当某一个链表为空的时候,返回另外一个链表
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode() : val(0), next(nullptr) {}
* ListNode(int x) : val(x), next(nullptr) {}
* ListNode(int x, ListNode *next) : val(x), next(next) {}
* };
*/
class Solution {
public:
ListNode* mergeTwoLists(ListNode* list1, ListNode* list2) {
if(list1 == nullptr)return list2;
if(list2 == nullptr)return list1;
if(list1->val <= list2->val)
{
list1->next = mergeTwoLists(list1->next,list2);
return list1;
}
else
{
list2->next = mergeTwoLists(list1,list2->next);
return list2;
}
}
};
3.1题目链接:206.反转链表
3.2题目描述:
给你单链表的头节点 head
,请你反转链表,并返回反转后的链表。
示例 1:
输入:head = [1,2,3,4,5] 输出:[5,4,3,2,1]
示例 2:
输入:head = [1,2] 输出:[2,1]
示例 3:
输入:head = [] 输出:[]
提示:
- 链表中节点的数目范围是
[0, 5000]
-5000 <= Node.val <= 5000
3.3解法:
算法思路:
- 递归函数的含义:交给你一个链表的头指针,你帮我逆序之后,返回逆序后的头节点;
- 函数体:先把当前结点之后的链表逆序,逆序完之后,把当前结点添加到逆序后的链表后面
- 递归出口:当前结点为空或者当前只有一个结点的时候,不用逆序,直接返回。
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode() : val(0), next(nullptr) {}
* ListNode(int x) : val(x), next(nullptr) {}
* ListNode(int x, ListNode *next) : val(x), next(next) {}
* };
*/
class Solution {
public:
ListNode* reverseList(ListNode* head) {
//之所以结束条件不仅仅是head == nullptr,也是为了在递归中返回新的头节点做前序工作
if(head == nullptr||head->next == nullptr)return head;
ListNode* newhead = reverseList(head->next);//在递归中如何返回新的头节点。
head->next->next = head;
head->next = nullptr;
return newhead;
}
};
4.题目链接:24.两两交换链表中的结点
4.2题目描述:
给你一个链表,两两交换其中相邻的节点,并返回交换后链表的头节点。你必须在不修改节点内部的值的情况下完成本题(即,只能进行节点交换)。
示例 1:
输入:head = [1,2,3,4] 输出:[2,1,4,3]
示例 2:
输入:head = [] 输出:[]
示例 3:
输入:head = [1] 输出:[1]
提示:
- 链表中节点的数目在范围
[0, 100]
内 0 <= Node.val <= 100
4.3解法
算法思路:
- 递归函数的含义:交给你一个链表,将这个链表两两交换一下,然后返回交换后的头结点;
- 函数体:先去处理一下第二个结点往后的链表,然后再把当前的两个结点交换一下,连接上后面处理后的链表
- 递归出口:当前结点为空或者当前只有一个结点的时候,不用交换,直接返回。
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode() : val(0), next(nullptr) {}
* ListNode(int x) : val(x), next(nullptr) {}
* ListNode(int x, ListNode *next) : val(x), next(next) {}
* };
*/
class Solution {
public:
ListNode* swapPairs(ListNode* head) {
if(head == nullptr ||head->next == nullptr)return head;
ListNode* oldhead = swapPairs(head->next->next);
ListNode* newhead = head->next;
newhead->next = head;
head->next = oldhead;
return newhead;
}
};
5.题目链接:50.Pow(x,n)
5.2题目描述:
实现 pow(x, n) ,即计算 x
的整数 n
次幂函数(即,xn
)。
示例 1:
输入:x = 2.00000, n = 10 输出:1024.00000
示例 2:
输入:x = 2.10000, n = 3 输出:9.26100
示例 3:
输入:x = 2.00000, n = -2 输出:0.25000 解释:2-2 = 1/22 = 1/4 = 0.25
提示:
-100.0 < x < 100.0
-2^31 <= n <= 2^31-1
n
是一个整数- 要么
x
不为零,要么n > 0
。 -10^4 <= xn <= 10^4
5.3解法(递归-快速幂)
算法思路:
- 递归函数的含义:求出x的n次方是多少,然后返回
- 函数体:先求出x的n/2次方是多少,然后根据n的奇偶,得出x的n次方是多少
- 递归出口:当n为0的时候,返回1即可
class Solution {
public:
double myPow(double x,int n)
{
return n<0 ? 1.0/pow(x,-(long long)n):pow(x,n);
}
double pow(double x, long long n) {
if(n==0)return 1.0;
double tmp=pow(x,n/2);
return n%2==0?tmp*tmp:tmp*tmp*x;
}
};