自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(31)
  • 收藏
  • 关注

原创 GAN-生成对抗性神经网络

给定数据分布,希望设计生成器,使得生成器所产生的数据分布尽可能接近。为了学习相应的数据分布,首先随机初始化一个噪音分布),然后将随机初始化的噪音分布作为生成器的输入,得到输出;判别器判断是来自于初始数据分布,或者来自生成器的生成。我们可以形式化地定义生成器和判别器:判别器的训练目标是最大化分类的准确率,而生成器的训练目标则是最小化判别器的准确率。二者的估值函数是完全相反的,因而形成了零和博弈。

2023-12-05 18:57:39 2082

原创 ChatGPT-聊天生成预训练转换器

ChatGPT的介绍ChatGPT的介绍ChatGPT全称为“chat Generative Pre-trained Transformer”,翻译成中文就是生成型预训练变换模型。它是美国公司OpenAl在2022年11月30日发布研发的聊天机器人程序,能用于问答、文本摘要生成、机器翻译、分类、代码生成和对话Al。「l是一款人工智能技术驱动的自然语言处理工具。ChatGPT具有同类产品具备的一些特性,例如对话能力,能够在同一个会话期间内回答上下文相关的后续问题。

2023-06-17 18:06:20 9666 3

原创 IT圈的“鄙视链”:一场情感大戏与瞬间的游戏

除了语言和技术方面的鄙视链,IT圈中还存在其他方面的鄙视链。人们往往会对自己的能力和价值产生一种自我肯定和自我优越感,而这种自我肯定和自我优越感往往需要通过比较其他人的能力和价值来实现。我们应该以一种积极、开放、合作的态度来面对工作中的挑战和困难,同时也要尊重每个人的能力和价值。同时,我们也应该保持一种谦虚和学习的态度,不断学习和提升自己的能力和价值。如果一个人总是处于一种自我肯定和自我优越的状态中,那么他很可能会忽略自己的不足和需要改进的地方,从而无法实现更好的自我提升和发展。

2023-12-14 17:26:18 467

原创 前端技术的挑战与机遇:从‘前端已死‘到未来发展趋势

我认为“前端已死”的言论是一种片面的看法。虽然前端开发的技术栈在不断扩大,学习成本也在增加,但这并不意味着前端已经过时或者不再重要。相反,随着互联网的普及和用户需求的多样化,前端开发仍然具有重要的作用。同时,随着技术的不断发展和变化,前端也需要不断学习和更新技能。因此,我们应该保持对新技术的关注和学习,不断更新自己的技能和知识储备。然而,这些因素并不意味着前端已经死亡。相反,前端仍然是IT行业中的重要组成部分,并且在许多领域中发挥着重要的作用。

2023-12-14 17:17:18 571

原创 STGCN-时空图卷积网络

STGCN作为一种专门用于处理时空数据的深度学习网络,具有高效性、可解释性和广泛应用性等优点。通过结合图卷积网络和因果卷积网络,STGCN可以有效地从时间和空间两个维度上提取特征,并考虑时间序列之间的因果关系。在实现STGCN时,需要关注数据预处理、网络结构设计、损失函数和优化器选择以及训练策略等方面。为了提高STGCN的性能和预测精度,可以采取模型集成、知识蒸馏、迁移学习和混合精度训练等优化策略。

2023-12-11 18:07:28 3533

原创 ESPCN:高效率低分辨率图像超分辨率的利器

ESPCN是一种高效率的图像超分辨率方法,能够在低分辨率图像上直接计算卷积得到高分辨率图像。相比于传统的图像超分辨率方法,ESPCN具有计算量和时间成本上的优势,同时也可以适用于各种类型的低分辨率图像和不同的超分辨率应用场景。因此,ESPCN在数字图像识别、遥感图像分析、医学图像诊断等领域具有广泛的应用前景。

2023-12-11 18:03:11 1871

原创 MMGCN:多模态图卷积网络在推荐系统中的应用

MMGCN(Multi-modal Graph Convolutional Network)是一种基于图卷积网络的模型,旨在充分利用多模态数据和用户-物品之间的交互信息,为个性化推荐提供更准确、更全面的解决方案。

2023-12-11 17:59:26 1008

原创 HGNN-超图神经网络

在人工智能领域,神经网络已经成为了最强大的工具之一。然而,传统的神经网络模型,如全连接神经网络(FCNN)和卷积神经网络(CNN),虽然非常有效,但也有其限制。在这种情况下,一种新型的神经网络模型——HGNN(Hierarchical Graph Neural Network)出现了。HGNN通过打破传统的神经网络架构,实现了更高效、更灵活的计算能力,成为近年来研究的热点之一。

2023-12-11 17:56:30 1067 1

原创 RKNN:让机器学习更高效

RKNN,全称Recurrent Kernel Neural Network,是一种新型的神经网络模型,具有高效、可解释性强等特点,被广泛应用于自然语言处理、计算机视觉等领域。未来可以在模型优化、硬件加速、预训练与迁移学习、多模态融合、隐私保护、可解释性与鲁棒性、跨语言与跨文化应用以及智能化应用等方面进行深入研究和发展,以推动RKNN在各个领域的广泛应用和发展。在RKNN中,每个神经元只与输入数据的一个局部区域相连,这大大减少了模型的参数数量,提高了模型的泛化能力。三、RKNN的应用场景。

2023-12-11 17:53:54 2889

原创 探索CV经典主干网络:从VGGNet到ResNet

CV经典主干网络如VGGNet、ResNet和Xception等在计算机视觉领域中具有举足轻重的地位。它们通过独特的架构和强大的性能,为各种计算机视觉任务提供了有效的解决方案。这些网络结构不仅推动了计算机视觉技术的发展,还为后续的网络结构创新提供了新的思路和方法。随着深度学习技术的不断发展,我们期待更多的创新性网络结构出现。未来的研究将进一步探索网络结构的优化和创新,以提高模型的性能和计算效率。同时,随着应用场景的不断扩展和数据量的不断增加,计算机视觉技术将在更多的领域得到应用和发展。

2023-12-11 17:47:12 835

原创 PPO-强化学习中的策略优化

强化学习是一种通过智能体与环境交互来学习的机器学习方法。在强化学习中,智能体通过尝试不同的行为,接收并解析来自环境的反馈(称为奖励或惩罚),从而调整其行为策略,以最大化长期累积的奖励。强化学习的特点在于其探索和利用的平衡。探索是指智能体尝试新的行为以获取更多信息;而利用则是指智能体根据已有的信息做出最优的决策。在强化学习中,这两者之间存在一种权衡,即在探索新的行为和利用已有信息之间找到平衡。

2023-12-11 17:34:40 1740

原创 OCR-打开文本世界的钥匙

OCR技术以其强大的文本转换和处理能力,已经成为数字化时代不可或缺的一部分。在未来,随着技术的不断进步和应用场景的不断拓展,OCR技术将在更多领域发挥重要作用,帮助我们更好地理解和利用文本数据,推动社会的数字化和信息化进程。OCR技术作为连接文本数据和非结构化与结构化之间的桥梁,其重要性在数字化时代日益凸显。通过OCR技术,我们可以将大量的纸质文档、图片等转化为可编辑和可搜索的电子文档,大大提高了文档管理的效率和便利性。

2023-12-10 13:15:27 861

原创 MNN-轻量的深度学习引擎

然而,深度学习的应用往往需要大量的计算资源,这对于一些资源有限的环境来说是一个巨大的挑战。同时,MNN还可以通过与更多的开源框架和社区合作,吸引更多的开发者和企业使用,共同推动深度学习技术的发展和应用。MNN采用了独特的计算优化策略,包括计算批处理、动态图优化和汇编级别优化等,使得深度模型在端侧的推理和训练性能得到了极大的提升。总之,MNN作为高效轻量的深度学习引擎,具有广泛的应用前景和优势。随着技术的不断进步和发展,我们相信MNN将在深度学习的应用中发挥更加重要的作用,为用户提供更加智能和高效的服务。

2023-12-10 13:08:47 936

原创 GRU-门控循环单元

总的来说,GRU是一种强大而高效的神经网络模型,具有广泛的应用前景。通过深入理解和探索GRU的工作原理和应用场景,我们可以更好地利用这个模型来解决实际问题。同时,我们也期待看到更多的研究和创新能够进一步提升GRU的性能和扩展其应用范围。

2023-12-10 13:05:53 850

原创 机器人技术:未来科技的力量

相信在未来随着技术的不断进步和应用场景的不断扩展我们将看到更多令人惊叹的机器人技术成果为人类带来更多的便利和福祉。机器人技术是一个充满创新和挑战的领域,它涉及到多个学科的知识,包括机械工程、电子工程、计算机科学、人工智能等。通过结合各种技术,机器人可以完成各种复杂的任务,适应不同的环境,为人类带来巨大的便利和效益。相信在未来的发展中,机器人技术将继续发挥重要作用,为人类创造更加美好的未来。通过结合传感器、地图构建等技术,机器人可以在未知环境中进行自主导航和定位,实现更加灵活和高效的任务执行。

2023-12-10 10:26:54 428

原创 人工智能伦理:挑战与机遇

人工智能伦理是一个充满挑战与机遇的领域。随着技术的不断进步和应用场景的不断扩展,我们需要更加重视人工智能伦理问题并采取切实有效的措施来应对挑战。同时,我们也需要看到人工智能技术为人类带来的巨大机遇和潜力。只有在遵循人工智能伦理原则的前提下,我们才能更好地利用这一技术为人类带来福祉和发展。

2023-12-10 10:20:52 423

原创 强化学习:让机器自我试错,学会自主决策

强化学习是一种备受关注的机器学习方法,它通过让机器自我试错,学会在特定环境中做出最优决策,从而实现自主学习。强化学习在许多领域中都展现出了巨大的潜力,如游戏、自动驾驶、机器人控制等。未来随着技术的不断进步和应用场景的不断扩展相信强化学习将在更多领域发挥更大的作用并为我们的生活带来更多的便利和效益。

2023-12-10 10:13:24 1188

原创 计算机视觉:打开机器之眼看世界

计算机视觉是人工智能领域中备受关注的一部分,它的目标是赋予计算机类似于人类眼睛的功能,让机器能够感知和理解周围的世界。通过图像和视频数据,计算机视觉技术将信息转化为可理解和可操作的数据,为各种应用领域提供了强大的支持。

2023-12-10 10:09:23 986

原创 NLP-自然语言处理

未来,随着技术的不断发展和应用场景的不断扩大,自然语言处理技术将继续取得重要的进展,并为我们的生活和工作带来更多的便利和效益。同时,我们也需要注意到自然语言处理技术所带来的隐私保护和安全性等问题,以确保技术的可持续发展和用户的满意度。本文将介绍自然语言处理的基本概念、应用场景、发展历程和未来趋势。早期的自然语言处理主要依赖于规则和模式匹配,随着深度学习技术的兴起,基于统计学习和神经网络的自然语言处理方法逐渐成为主流。随着技术的不断发展和应用场景的不断扩大,自然语言处理技术将继续取得重要的进展。

2023-12-10 10:04:35 996

原创 深度神经网络架构和优化

深度神经网络是深度学习的核心组成部分,其训练和优化是一项非常具有挑战性的任务。然而,通过一系列的技术和方法,我们可以有效地训练和优化深度神经网络,并在许多领域中获得非常好的性能。未来,随着技术的不断发展和应用场景的不断扩大,深度神经网络将会得到更广泛的应用和更深入的研究。

2023-12-10 10:01:53 853

原创 GEM-图嵌入网络

图嵌入网络是一种用于图结构数据嵌入的神经网络模型,通过将图结构数据中的节点映射到低维空间中,实现对图结构数据的降维和特征提取。与传统的图嵌入方法不同,GEM采用了神经网络的方法,通过对节点之间的关系和特征信息进行学习和建模,实现了更加有效的图嵌入。在GEM中,节点之间的关系和特征信息是通过邻居节点的信息进行传递和聚合的。这种信息传递和聚合的过程可以通过卷积运算来实现。具体来说,GEM通过对邻居节点的特征信息进行聚合,得到当前节点的特征信息。

2023-12-09 20:10:19 947

原创 GAT-图注意力网络

图神经网络(Graph Neural Network,简称GNN)是一种用于处理图结构数据的神经网络模型。与传统的神经网络模型不同,GNN能够直接对图结构数据进行学习和推理。通过对节点之间的关系和特征信息进行捕捉和传递,GNN能够实现对图结构数据的深度分析和挖掘。在GNN中,节点之间的关系和特征信息可以通过邻居节点之间的信息传递来共享。这种信息传递的过程可以通过卷积运算来实现。具体来说,GNN通过对邻居节点的特征信息进行聚合,得到当前节点的特征信息。

2023-12-09 20:05:44 5791

原创 GCN-图卷积神经网络

本文将对图卷积神经网络(GCN)进行详细解析,包括其背景、原理、结构及应用等方面。我们将通过直观易懂的方式,带领大家逐步走进GCN的世界,感受GCN在处理图数据时的强大能力。GCN(图卷积神经网络)是一种特征提取器,用于从图数据中提取特征。它采用局部感知区域、共享权值和空间域上的降采样,相对于位移、缩放和扭曲,具有稳定不变的特性,能够很好地提取图像的空间特征。GCN的本质是提取图的结构特征,关键在于如何定义局部接受域。GCN的应用范围广泛,包括节点分类、图分类、边预测、以及图的嵌入表示等。

2023-12-09 19:50:47 1743

原创 科技之梦-编程之路

从事计算机行业让我获得了很多的成就感和满足感。我享受编程带来的乐趣和挑战,也喜欢与他人合作和沟通的过程。我相信这个行业仍然有很大的发展空间和机会,我期待着在这个行业中继续发挥自己的价值和创造力,为公司和社会做出更多的贡献。

2023-12-09 19:35:28 394

原创 GNN-图神经网络

图神经网络在处理图结构数据方面具有广泛的应用前景和重要的研究价值。未来,随着技术的不断发展和进步,我们可以期待看到更多的创新和改进的GNN模型,为解决复杂的问题提供更加有效和准确的解决方案。同时,我们也需要继续研究和解决GNN面临的问题和挑战,如选择合适的邻居节点进行信息聚合、如何平衡全局和局部信息的传递等,以进一步推动GNN的发展和应用。

2023-12-09 19:25:38 845

原创 编程的重要性及技术难题解决方法 - 从问题到解决方案

编程世界里的三大谜题:bug、性能优化与跨平台兼容性每个职业都有其固有的挑战和困难,对于程序员来说,这些困难往往来自于技术本身。编程,就像是一个充满谜题的世界,而程序员则是这个世界的解密高手,面临着无数的问题和挑战。其中,有三个问题可以说是最让程序员头疼的:bug、性能优化和跨平台兼容性。这三个问题就像是三个不同的谜题,需要程序员们运用他们的知识和技能去解决。首先,我们来谈谈bug。bug就像是编程世界里的隐藏恶魔,你不知道它何时会出现,也不知道它会带来什么样的问题。

2023-12-09 17:59:07 901

原创 低代码开发-创新与效率的完美融合

低代码是一种软件开发方法,它通过图形化界面和预构建模块,使开发人员能够以较少的编码工作快速构建应用程序。低代码平台通常提供可视化的编程环境,开发者可以通过拖拽组件和配置参数来创建应用程序,而无需编写大量的手动代码。因此,低代码能够降低编程门槛,使非技术人员也能参与软件开发。

2023-12-09 17:51:56 303

原创 Back Propagation-BP神经网络

BP算法是一种通过反向传播来训练神经网络的方法。它通过前向传播计算网络的输出值和预期输出值之间的误差,然后通过反向传播调整网络参数以减少误差。在BP算法中,首先会进行前向传播的计算过程。这个过程会根据输入样本和初始化的网络权重和偏置值,计算出网络的输出值。然后,将这个输出值与期望的输出值进行比较,计算出误差。如果误差不在给定的范围内,就会进行反向传播的过程。反向传播是通过将误差分摊给各层的所有单元,从而获得各层单元的误差信号。

2023-12-09 17:40:11 1046

原创 DNN-深度神经网络

深度神经网络(DNN)是一种多层神经网络,通过将多个神经元连接在一起,形成一种深度结构。DNN可以用于处理各种类型的数据,包括图像、文本、语音等。在深度神经网络中,隐含层的数量和每层的神经元数量可以视具体任务和数据类型而定。DNN的训练过程通常采用反向传播算法和梯度下降优化方法,通过不断地调整神经网络的参数,以最小化预测误差和损失函数。深度神经网络具有多个非线性映射的特征变换,可以对高度复杂的函数进行拟合。相比浅层建模方式,深层建模能更细致高效的表示实际的复杂非线性问题。

2023-12-09 17:16:35 3444

原创 RNN-循环神经网络

循环神经网络(RNN)是一种递归神经网络,其特点是能够处理序列数据,包括时间序列、语音、自然语言等。RNN的核心结构是循环单元,它可以捕获序列数据的时序信息,并能够利用这些信息进行模式识别和预测。RNN的结构可以根据具体任务进行调整,常见的变体包括长短期记忆网络(LSTM)、门控循环单元(GRU)等。这些变体在处理序列数据时具有更强的表达能力和性能。RNN在许多领域得到了广泛应用,包括语音识别、自然语言处理、机器翻译、图像描述等。

2023-12-08 21:20:56 1099

原创 CNN-卷积神经网络

卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习算法,它包含卷积计算且具有深度结构。这种网络通常用于处理和分析图像或视频等二维数据,同时也适用于处理一维数据如时间序列和文本等。CNN通过卷积运算模拟了生物神经元对输入信息的感知方式,能够有效地处理和分析局部特征。在CNN中,每个神经元都只与输入数据的一个局部区域相连,这大大减少了参数的数量和计算复杂度。卷积核是CNN中的核心组件,它可以学习并提取输入数据中的局部特征,然后将这些特征用于后续的分类或回归任务。

2023-12-08 18:18:05 1224

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除