【LeetCode 热题 100】滑动窗口最大值 / 最小覆盖子串 / 轮转数组 / 缺失的第一个正数

头像
⭐️个人主页:@小羊
⭐️所属专栏:LeetCode 热题 100
很荣幸您能阅读我的文章,诚请评论指点,欢迎欢迎 ~

动图描述


子串

和为 K 的子数组

在这里插入图片描述

class Solution {
public:
    int subarraySum(vector<int>& nums, int k) {
        unordered_map<int, int> hash;
        hash[0] = 1;
        int pre = 0, res = 0;
        for (auto e : nums)
        {
            pre += e;
            res += hash[pre - k];
            hash[pre]++;
        }
        return res;
    }
};

滑动窗口最大值

在这里插入图片描述

看完这个题很容易想到用优先级队列,但是我写了一半突然意识到,当左侧出窗口时优先级队列好像无法立马找到这个值并删除,所以就放弃了这个想法;
于是就又想到set也能排序,通过 rbegin() 返回最大值对应的迭代器,但是数组中可能会出现重复的数,而set会去重,所以就又想到 multiset,它可以真正意义上的排序。
但是测试了一下发现AC不了,又想到 multiset 虽然不去重,但是 erase 会把所有相同的值都删除,所以这个办法好像又不行;
但是又突然想到之前学习 multiset 的时候测试过不同的 erase 删除,发现传值、传迭代器、传迭代器区间,最后的结果是不同的。其中传值和传迭代器区间会把所有相同的值都删除,而传迭代器的话只会删除一个。
于是又测试了一下,终于过了。但是N*logN的时间负责度居然才击败了百分之5的用户🤡

class Solution {
public:
    vector<int> maxSlidingWindow(vector<int>& nums, int k) {
        vector<int> res;
        multiset<int> hash;
        for (int l = 0, r = 0; r < nums.size(); r++) 
        {
            hash.insert(nums[r]);
            if (r - l + 1 == k)
            {
                res.push_back(*hash.rbegin());
                hash.erase(hash.find(nums[l++]));
            }
        }
        return res;
    }
};

这位兄弟在官方题解下大彻大悟,我要是有他一半悟性就好了哈哈…
在这里插入图片描述

下面是看了官解才学到的方法,对嘛,用键值对绑定起来不就能找到了。

class Solution {
public:
    vector<int> maxSlidingWindow(vector<int>& nums, int k) {
        vector<int> res;
        priority_queue<pair<int, int>> pq;
        for (int i = 0; i < k; i++)
        {
            pq.emplace(nums[i], i);
        }
        res.push_back(pq.top().first);
        for (int i = k; i < nums.size(); i++)
        {
            pq.emplace(nums[i], i);
            while (pq.top().second <= i - k) // 关键 <=
            {
                pq.pop();
            } 
            res.push_back(pq.top().first);
        } 
        return res;
    }
};

最小覆盖子串

在这里插入图片描述

class Solution {
public:
    string minWindow(string s, string t) {
        int hash1[128] = {};
        int m = s.size(), n = t.size();
        for (auto ch : t) hash1[ch - 'A']++;
        int hash2[128] = {};
        int begin = 0, len = m + 1;
        for (int l = 0, r = 0, cnt = 0; r < m; r++)
        {
            int in = s[r] - 'A';
            if (++hash2[in] <= hash1[in]) cnt++;
            while (cnt == n)
            {
                if (r - l + 1 < len)
                {
                    len = r - l + 1;
                    begin = l;
                }
                int out = s[l++] - 'A';
                if (hash2[out]-- <= hash1[out]) cnt--;
            }
        }
        return len > m ? "" : s.substr(begin, len);
    }
};

普通数组

最大子数组和

在这里插入图片描述

定义 dp[i] 表示以i位置为结尾的最大子数组,则以i位置为结尾的子数组可以分为两类:i位置元素单独构成子数组,i位置及其之前所有元素构成子数组,则可得状态转移方程:dp[i] = max(dp[i - 1] + nums[i], nums[i]);

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int res = -0x3f3f3f3f;
        int n = nums.size();
        vector<int> dp(n + 1);
        for (int i = 1; i <= n; i++)
        {
            dp[i] = max(dp[i - 1] + nums[i - 1], nums[i - 1]);
            res = max(res, dp[i]);
        }
        return res;
    }
};

空间优化。

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int res = -0x3f3f3f3f;
        int pre = 0;
        for (auto e : nums)
        {
            pre = max(pre, 0) + e;
            res = max(res, pre);
        }
        return res;
    }
};

这就是我算法不好的原因吗?
在这里插入图片描述


合并区间

在这里插入图片描述

一道区间贪心问题。

class Solution {
public:
    vector<vector<int>> merge(vector<vector<int>>& intervals) {
        sort(intervals.begin(), intervals.end());
        vector<vector<int>> res;
        int l = intervals[0][0], r = intervals[0][1];
        for (int i = 1; i < intervals.size(); i++)
        {
            int a = intervals[i][0], b = intervals[i][1];
            // 当区间重叠时合并两个区间
            if (a <= r) r = max(r, b);
            else 
            {
                // 当区间不重叠时插入
                res.push_back({l, r});
                l = a, r = b;
            }
        }
        res.push_back({l, r});
        return res;
    }
};

轮转数组

在这里插入图片描述

本题解法:爱滴魔力转圈圈。
我们来观察结果,原数组右边某个区间长度的数都平移到了左边,左边剩余区间长度的数都平移到了右边。那我们把数组反转就可以得到类似的效果,但是此时两部分都是反转的,那我们再对应区间反转即可。

class Solution {
public:
    void rotate(vector<int>& nums, int k) {
        k %= nums.size();
        reverse(nums.begin(), nums.end());
        reverse(nums.begin(), nums.begin() + k);
        reverse(nums.begin() + k, nums.end());
    }
};

除自身以外数组的乘积

在这里插入图片描述

class Solution {
public:
    vector<int> productExceptSelf(vector<int>& nums) {
        int n = nums.size(); 
        vector<int> f(n, 1), g(n, 1), res(n);
        for (int i = 1; i < n; i++) f[i] = f[i - 1] * nums[i - 1];
        for (int i = n - 2; i >= 0; i--) g[i] = g[i + 1] * nums[i + 1];
        for (int i = 0; i < n; i++) res[i] = f[i] * g[i];
        return res;
    }
};

缺失的第一个正数

在这里插入图片描述

这题做的跟吃了蟑螂一样难受。

class Solution {
public:
    int firstMissingPositive(vector<int>& nums) {
        int n = nums.size();
        for (int i = 0; i < n; i++)
        {
            while (nums[i] > 0 && nums[i] <= n && nums[nums[i] - 1] != nums[i])
            {
                swap(nums[nums[i] - 1], nums[i]);
            }
        }
        for (int i = 0; i < n; i++)
        {
            if (nums[i] != i + 1)
            {
                return i + 1;
            }
        }
        return n + 1;
    }
};

本篇文章的分享就到这里了,如果您觉得在本文有所收获,还请留下您的三连支持哦~

头像
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值