深度优先搜索(DFS):从入门到精通!

开篇互动:你是否在为数据遍历效率而烦恼?

“面对复杂的数据结构,如何快速找到目标节点?”
深度优先搜索(DFS)是一种经典的图遍历算法,在解决路径查找、迷宫问题、拓扑排序等问题中发挥着重要作用。无论你是编程小白还是有一定经验的开发者,这篇文章都将带你一步步掌握 DFS 的核心概念和实现方法!

让我们一起揭开 DFS 的神秘面纱,并探索如何让它在实际应用中大放异彩!🚀


一、深度优先搜索(DFS):基础篇

1.1 DFS 的定义

深度优先搜索(Depth-First Search,简称 DFS)是一种用于遍历树或图的算法。它的核心思想是尽可能“深入”访问图的每个节点,直到无法继续前进为止,然后再回溯到之前的节点继续遍历。


1.2 DFS 的工作原理

DFS 的基本步骤如下:

  1. 访问当前节点:从起点节点开始访问。
  2. 递归遍历子节点:依次访问当前节点的所有未被访问过的子节点。
  3. 回溯:当所有子节点都被访问完毕后,回溯到父节点继续遍历。

1.3 DFS 的典型应用场景

  • 迷宫求解:寻找从起点到终点的路径。
  • 连通性问题:判断图中的两个节点是否连通。
  • 拓扑排序:对有向无环图(DAG)进行拓扑排序。
  • 路径查找:在图中查找从一个节点到另一个节点的所有可能路径。

二、DFS 的实现方式

2.1 递归实现

递归是实现 DFS 最直观的方式。通过递归函数,我们可以轻松地模拟 DFS 的回溯过程。

代码示例:递归实现 DFS
import java.util.ArrayList; 
import java.util.List; 
 
public class DFSDemo {
    // 定义一个图结构 
    private List<List<Integer>> graph;
 
    public DFSDemo(int numNodes) {
        graph = new ArrayList<>();
        for (int i = 0; i < numNodes; i++) {
            graph.add(new  ArrayList<>());
        }
    }
 
    // 添加边 
    public void addEdge(int u, int v) {
        graph.get(u).add(v); 
    }
 
    // 递归实现 DFS 
    public void dfsRecursive(int startNode, boolean[] visited) {
        // 标记当前节点为已访问 
        visited[startNode] = true;
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Leaton Lee

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值