开篇互动:你是否在为数据遍历效率而烦恼?
“面对复杂的数据结构,如何快速找到目标节点?”
深度优先搜索(DFS)是一种经典的图遍历算法,在解决路径查找、迷宫问题、拓扑排序等问题中发挥着重要作用。无论你是编程小白还是有一定经验的开发者,这篇文章都将带你一步步掌握 DFS 的核心概念和实现方法!
让我们一起揭开 DFS 的神秘面纱,并探索如何让它在实际应用中大放异彩!🚀
一、深度优先搜索(DFS):基础篇
1.1 DFS 的定义
深度优先搜索(Depth-First Search,简称 DFS)是一种用于遍历树或图的算法。它的核心思想是尽可能“深入”访问图的每个节点,直到无法继续前进为止,然后再回溯到之前的节点继续遍历。
1.2 DFS 的工作原理
DFS 的基本步骤如下:
- 访问当前节点:从起点节点开始访问。
- 递归遍历子节点:依次访问当前节点的所有未被访问过的子节点。
- 回溯:当所有子节点都被访问完毕后,回溯到父节点继续遍历。
1.3 DFS 的典型应用场景
- 迷宫求解:寻找从起点到终点的路径。
- 连通性问题:判断图中的两个节点是否连通。
- 拓扑排序:对有向无环图(DAG)进行拓扑排序。
- 路径查找:在图中查找从一个节点到另一个节点的所有可能路径。
二、DFS 的实现方式
2.1 递归实现
递归是实现 DFS 最直观的方式。通过递归函数,我们可以轻松地模拟 DFS 的回溯过程。
代码示例:递归实现 DFS
import java.util.ArrayList;
import java.util.List;
public class DFSDemo {
// 定义一个图结构
private List<List<Integer>> graph;
public DFSDemo(int numNodes) {
graph = new ArrayList<>();
for (int i = 0; i < numNodes; i++) {
graph.add(new ArrayList<>());
}
}
// 添加边
public void addEdge(int u, int v) {
graph.get(u).add(v);
}
// 递归实现 DFS
public void dfsRecursive(int startNode, boolean[] visited) {
// 标记当前节点为已访问
visited[startNode] = true;