数据库迁移实战:如何零停机、零丢失迁移数据库?

引言:一场没有硝烟的“数据大迁徙”

想象一下,你正在为一家电商公司优化数据库架构,需要将 MySQL 迁移到分布式数据库 TiDB。但问题来了:如何在业务高峰期不停止服务,同时确保数据零丢失?

这不仅是技术挑战,更是一场精密的“数据芭蕾舞”。今天,我们就从理论到实战,手把手教你完成这场“不可能的任务”!


一、迁移前的“战前沙盘推演”

1.1 数据摸底:绘制“数据地图”

  • 数据规模:统计表大小、索引、分区信息(示例:SELECT table_name, table_rows FROM information_schema.tables )。
  • 业务流量:监控 QPS、TPS、热点表(工具:Prometheus + Grafana)。
  • 依赖分析:确认外键、存储过程、定时任务等关联组件。

1.2 迁移目标:明确“作战目标”

  • 目标架构:单机 → 分布式(如 MySQL → TiDB)或云厂商迁移(AWS RDS → 阿里云 PolarDB)。
  • SLA要求:RPO(恢复点目标)≤ 1分钟,RTO(恢复时间目标)≤ 5分钟。

二、迁移方案设计:选择你的“武器库”

2.1 方案1:双活架构 + 增量同步

  • 原理:新旧数据库并行运行,通过日志同步增量数据。
  • 工具
    • MySQLpt-online-schema-change(表结构变更)
    • 通用方案:Canal(解析 binlog) + Flink(实时同步)
    • 云服务:AWS DMS、阿里云 DTS
  • Java双写示例
    public void writeData(DataSource oldDS, DataSource newDS, Data data) {
        try (Connection conn1 = oldDS.getConnection(); 
             Connection conn2 = newDS.getConnection())  {
            conn1.setAutoCommit(false); 
            conn2.setAutoCommit(false); 
            
            // 同步写入新旧数据库 
            insertIntoDB(conn1, data);
            insertIntoDB(conn2, data);
            
            conn1.commit(); 
            conn2.commit(); 
        } catch (SQLException e) {
            // 异常处理:记录日志并回滚 
            rollback(conn1);
            rollback(conn2);
            throw new RuntimeException("双写失败", e);
        }
    }

2.2 方案2:分阶段迁移(Phased Migration)

  • 步骤
    1. 冷数据迁移:先迁移历史数据(如备份恢复)。
    2. 热数据同步:通过 CDC(Change Data Capture)实时同步增量数据。
    3. 流量切换:灰度发布,逐步将请求切到新库。

三、迁移实施:执行“精密手术”

3.1 冷数据迁移:备份与恢复

  • 工具
    • mysqldump(全量导出)
    • pg_dump(PostgreSQL)
    • Java批量导入
      // 使用JDBC批量插入提升效率 
      try (Connection conn = dataSource.getConnection(); 
           PreparedStatement ps = conn.prepareStatement("INSERT  INTO user VALUES (?, ?, ?)")) {
          for (User user : userList) {
              ps.setLong(1,  user.getId()); 
              ps.setString(2,  user.getName()); 
              ps.setString(3,  user.getEmail()); 
              ps.addBatch(); 
          }
          ps.executeBatch(); 
      }

3.2 增量同步:让数据“永不停跳”

  • 关键点
    • 日志位点记录:保存 binlog 文件名和位置(SHOW MASTER STATUS)。
    • 冲突解决:处理新旧库同时写入的冲突(如选择新值覆盖旧值)。
  • 工具示例
    # 使用Debezium进行实时同步 
    bin/connect-standalone.properties  \
    debezium-connector-mysql.properties  \
    debezium-sink-kafka.properties  

四、数据一致性校验:揪出“潜伏的BUG”

4.1 全量校验:逐行对比

  • 工具
    • pt-table-checksum(Percona工具)
    • Java自定义脚本
      public void verifyData(DataSource source, DataSource target, String tableName) {
          try (Connection srcConn = source.getConnection(); 
               Connection tgtConn = target.getConnection())  {
              
              // 获取源表数据哈希值 
              String srcHash = getTableHash(srcConn, tableName);
              String tgtHash = getTableHash(tgtConn, tableName);
              
              if (!srcHash.equals(tgtHash))  {
                  throw new DataMismatchException("表 " + tableName + " 数据不一致");
              }
          }
      }

4.2 持续监控:防止“数据漂移”

  • 指标监控
    • 新旧库 QPS、TPS 对比
    • 同步延迟(如 Kafka 消息堆积)
    • Java监控示例
      // 使用Micrometer监控同步延迟 
      MeterRegistry registry = new PrometheusMeterRegistry(PrometheusConfig.DEFAULT);
      registry.gauge("cdc_delay_seconds",  
                    () -> calculateDelay(sourceDS, targetDS));

五、回滚策略:准备“逃生舱”

5.1 快速回滚:一键切换流量

  • 方案
    • DNS切换:修改数据库域名指向旧库。
    • 代理层路由:通过 Mycat 或 ProxySQL 动态切换后端库。
  • Java配置热更新
    // 使用Apollo配置中心动态修改数据源 
    @Value("${db.url}") 
    private String dbUrl;
    
    @Scheduled(fixedRate = 60000)
    public void refreshDataSource() {
        dataSource.setUrl(dbUrl); 
    }

5.2 数据修复:修补“时空裂缝”

  • 工具
    • pt-table-sync(Percona工具)
    • Java修复脚本:根据校验结果批量修复差异数据。

六、实战案例:从 MySQL 到 TiDB 的“真刀真枪”

6.1 场景:电商大促前的数据库升级

  • 挑战:日均 500 万订单,RPO ≤ 1 秒。
  • 方案
    1. 双写阶段:通过 Canal 同步数据到 TiDB。
    2. 流量切换:在凌晨低峰期,通过 DNS 切换流量。
    3. 验证:使用 JMeter 模拟高并发读写,对比新旧库结果。

结语:迁移不是“终点”,而是“新起点”

  • 核心原则
    • 最小化停机:通过双活和灰度发布逐步迁移。
    • 数据校验至上:宁可慢一点,不可错一点。
    • 工具赋能:善用 CDC、监控和自动化工具。

留言区互动
“你经历过哪些惊心动魄的数据库迁移?遇到过什么奇葩问题?”
“在迁移过程中,你最担心的是什么?”

点击“评论”,分享你的故事!下一期我们将揭秘“分布式事务的21种死法”——不见不散!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Leaton Lee

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值