洛谷 P8674 [蓝桥杯 2018 国 B] 调手表

文章讲述了蓝桥杯2018国赛中的一个编程问题,涉及电子手表时间调整,需计算使用两个按钮(加一和加k)从任意分钟调到另一个最少按键次数的最优策略。代码实现采用Dijkstra算法解决单源最短路径问题,分析了复杂度为O(n^2)。
摘要由CSDN通过智能技术生成



[蓝桥杯 2018 国 B] 调手表

题目描述

小明买了块高端大气上档次的电子手表,他正准备调时间呢。

在 M78 星云,时间的计量单位和地球上不同,M78 星云的一个小时有 n n n 分钟。

大家都知道,手表只有一个按钮可以把当前的数加一。在调分钟的时候,如果当前显示的数是 0 0 0,那么按一下按钮就会变成 1 1 1,再按一次变成 2 2 2。如果当前的数是 n − 1 n-1 n1,按一次后会变成 0 0 0

作为强迫症患者,小明一定要把手表的时间调对。如果手表上的时间比当前时间多 1 1 1,则要按 n − 1 n-1 n1 次加一按钮才能调回正确时间。

小明想,如果手表可以再添加一个按钮,表示把当前的数加 k k k 该多好啊……

他想知道,如果有了这个 + k +k +k 按钮,按照最优策略按键,从任意一个分钟数调到另外任意一个分钟数最多要按多少次。

注意,按 + k +k +k 按钮时,如果加 k k k 后数字超过 n − 1 , n-1, n1, 则会对 n n n 取模。

比如, n = 10 , k = 6 n=10,k=6 n=10,k=6 的时候,假设当前时间是 0 0 0,连按 2 2 2 + k +k +k 按钮,则调为 2 2 2

输入格式

一行两个整数 n , k n,k n,k,意义如题。

输出格式

一行一个整数。表示:按照最优策略按键,从一个时间调到另一个时间最多要按多少次。

样例 #1

样例输入 #1

5 3

样例输出 #1

2

提示

【样例解释】

如果时间正确则按 0 0 0 次。否则要按的次数和操作系列之间的关系如下:

  1. +1
  2. +1, +1
  3. +3
  4. +3, +1

【数据约定】

对于 30 % 30\% 30% 的数据 0 < k < n ≤ 5 0<k<n \le 5 0<k<n5

对于 60 % 60\% 60% 的数据 0 < k < n ≤ 100 0<k<n \le 100 0<k<n100

对于 100 % 100\% 100% 的数据 0 < k < n ≤ 1 0 5 0<k<n \le 10^5 0<k<n105

时限 3 秒, 256M。蓝桥杯 2018 年第九届国赛



题意解析

  • 对于手表的某一时刻,调到另一时刻最少需要按多少次,然后取最大次数。
    • 需要注意的是,我们有俩按键:+1+k
    • n = 10 , k = 6 n = 10, k = 6 n=10,k=6 举例:
      举例
      • 我们先从+0开始,这一步需要 0 0 0 次操作。
      • 从最少的操作,目前是 0 0 0 开始往后延伸:分别+1+6
        • +1:那么就是 0 + 1 = 1 0 + 1 = 1 0+1=1,也就是说+1操作需要 1 1 1 步。
        • +6:那么就是 0 + 6 = 6 0 + 6 = 6 0+6=6,也就是说+6操作需要 1 1 1 步。
      • 以此类推,每次都要以最小的那个操作数为源点往后延伸。

CODE

#include <iostream>
#include <vector>
#include <cstring>
#include <algorithm>
#include <queue>
#define ll long long
#define INF 0x3f3f3f3f 

using namespace std;

typedef pair<int, int> pii;  // 定义一个类型,表示一对整数

const int N = 1E5 + 10, M = 2E5 + 10;
int n, k;  // n是点的数量,k是每次可以增加的步数
int h[N], e[M], ne[M], w[M],idx;  // h, e, ne用于存储图的信息,idx是当前边的编号
int dist[N];  // dist用于存储每个点到起点的最短距离
bool st[N];  // st用于标记每个点是否已经被访问过
priority_queue<pii, vector<pii>, greater<pii>> heap;  // 定义一个小顶堆,用于存储待处理的点
int maxnum = 0;  // 用于存储最大的距离

void add(int ver, int x){
    int des = (ver + x) % n;  // 计算下一个点的编号
    
    // 如果通过这条边可以使得起点到终点的距离更短,就更新距离
    if(dist[des] > dist[ver] + 1){
        dist[des] = dist[ver] + 1;
        heap.push({dist[des], des});  // 将终点加入堆中
    }
}

int dijkstra(){
    memset(dist, INF, sizeof dist);  // 初始化所有点到起点的距离为无穷大
    dist[0] = 0;  // 起点到自己的距离为0
    
    heap.push({0, 0});  // 将起点加入堆中
    
    while(heap.size()){
        auto t = heap.top();  // 取出堆顶元素
        heap.pop();
        
        int ver = t.second, dis = t.first;  // ver是点的编号,dis是起点到该点的距离
        if(st[ver]) continue;  // 如果该点已经被访问过,就跳过
        
        st[ver] = true;  // 标记该点已经被访问过
        
        maxnum = max(maxnum, dis);  // 更新最大的距离
        
        add(ver, 1), add(ver, k);  // 尝试向前走一步和向前走k步
    }
    
    return maxnum;  // 返回最大的距离
}

int main()
{
    cin >> n >> k;  // 输入点的数量和每次可以增加的步数
    
    cout << dijkstra() << endl;  // 输出最大的距离
}


分析一下复杂度

本题没有m即边数,而每次操作执行两个情况,所以说边数 m = 2 m = 2 m=2 是个常量,那么除了朴素 D i j k s t r a   ( O ( n 2 ) ) Dijkstra\ (O(n^2)) Dijkstra (O(n2)) 其他单源最短路应该都可以做。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值