目录
[⚽1.什么是二叉排序树]
[🏐2.构建二叉排序树]
[🏀3.二叉排序树的查找操作]
[🥎4.二叉排序树的删除]
[🎱5.完整代码]
⚽1.什么是二叉排序树
二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树:
- 若它的左子树不为空,则左子树上所有节点的值都小于根节点的值
- 若它的右子树不为空,则右子树上所有节点的值都大于根节点的值
- 它的左右子树也分别为二叉搜索树
🏐2.构建二叉排序树
- 二叉搜索树的模拟实现
2.1 结点的声明
//描述二分查找树的一个结点
template<class K>
struct BSTNode
{
K _key; //数据域
struct BSTNode* _left; //指向左子树指针
struct BSTNode* _right; //指向右子树指针
BSTNode(K key)
:_key(key)
,_left(nullptr)
,_right(nullptr)
{
}
};
2.2 基本的几个成员函数
template<class K>
class BSTree
{
typedef BSTreeNode<K> Node;
private:
//没有参数是不能递归的
void DestroyTree(Node* root)
{
if (root == nullptr)
return;
DestroyTree(root->_left);
DestroyTree(root->_right);
delete root;
}
Node* CopyTree(Node* root)
{
if (root == nullptr)
return nullptr;
Node* copyNode = new Node(root->_key);
copyNode->_left = CopyTree(root->_left);
copyNode->_right = CopyTree(root->_right);
return copyNode;
}
public:
//强制编译器自己生成构造函数 -- C++11
BSTree() = default;
/*BSTree()
:_root(nullptr)
{}*/
//前序遍历递归拷贝
BSTree(const BSTree<K>& t)
{
_root = CopyTree(t._root);
}
//t1 = t2; -- 任何赋值重载都可以用现代写法
BSTree<K>& operator=(BSTree<K> t)
{
swap(_root, t._root);
return *this;
}
~BSTree()
{
DestroyTree(_root);
_root = nullptr;
}
构造函数:
- 这里我们可以采用传统的方法
- 直接初始化成员变量
- 也可以用C++11的语法default
- 强制编译器自己生成构造函数
拷贝构造:
- 这里我们用了递归的方式进行拷贝
- 采用根 - 左 - 右 的前序遍历的递归方式对整个二叉树拷贝
- 最后将跟结点返回
析构函数:
- 析构函数我们这里也是采用递归的方式进行一个一个结点析构
- 同样的我们再嵌套一个子函数
- 也是采用类似前序遍历的方法将整个二叉树释放掉
采用递归方式的缺点就是如果数的结点个数足够多的时候,就会有爆栈的风险!!
2.3 插入操作
假设我们有以下数据,我们按从左到右的顺序来构建二叉排序树:
- 首先,将8作为根节点
- 插入3,由于3小于8,作为8的左子树
- 插入10,由于10大于8,作为8的右子树
- 插入1,由于1小于8,进入左子树3,1又小于3,则1为3的左子树
- 插入6,由于6小于8,进入左子树3,6又大于3,则6为3的右子树
- 插入14,由于14大于8,进入右子树10,14又大于10,则14为10的右子树
- 插入4,由于4小于8,进入左子树3,4又大于3,进入右子树6,4还小于6,则4为6的左子树
- 插入7,由于7小于8,进入左子树3,7又大于3,进入右子树6,7还大于于6,则7为6的右子树
- 插入13,由于13大于8,进入右子树10,又13大于10,进入右子树14,13小于14,则13为14的左子树
经过以上的逻辑,这棵二叉排序树构建完成。
我们可以看出:
- 只要左子树为空,就把小于父节点的数插入作为左子树
- 只要右子树为空,就把大于父节点的数插入作为右子树
- 如果不为空,就一直往下去搜索,直到找到合适的插入位置
没错,这棵二叉树中序遍历结果为:
- 二叉树中序遍历结果为升序,左节点<根节点<右节点
插入思路:
- 从根结点开始遍历。(不能相等哦,直接结束就好)
- key<遍历结点的值,则遍历其左子树;key>遍历结点的值,则遍历其右子树
- 直到遍历到某个叶子结点
- 插入:比叶子节点小,插入左子树,反之,右子树。
根据以上思路,我们其实就可以写出代码了,构建的过程其实就是插入的过程:
//插入函数
bool Insert(const K key)
{
Node* newnode = new Node(key);
//空树时
if (_root == NULL)
{
_root = newnode;
return true;
}
Node* cur = _root; //用来遍历
Node* parent = nullptr; //记录上一个节点
while (cur)
{
parent = cur;
//key< 结点值,遍历其左子树
if (key < cur->_key)
{
cur = cur->_left;
}
//key> 结点值,遍历其右子树
else if (key > cur->_key)
{
cur = cur->_right;
}
//不能插入相同的
else
{
return false;
}
}
if (key < parent->_key)
{
parent->_left = newnode;
}
if (key > parent->_key)
{
parent->_right = newnode;
}
return true;
}
🏀3.二叉排序树的查找操作
它既然也叫二叉查找树,那想必会非常方便我们查找吧!它的操作并不是把中序遍历的结果存入数组,然后在有序数组里查找,而是直接在树上查找。
- 首先,访问根节点8
- 根据性质,7<8,访问8的左子树
- 访问到了3,7>3,访问3的右子树
- 访问到了6,继续访问6的右子树
- 访问到了7,刚好找到啦!
显然,它的效率会比在无序数组中挨着查找快多了吧!我们直接上代码。
//查找
bool Find(const K& key)
{
Node* cur = _root;
while</