最后
经过日积月累, 以下是小编归纳整理的深入了解Java虚拟机文档,希望可以帮助大家过关斩将顺利通过面试。
由于整个文档比较全面,内容比较多,篇幅不允许,下面以截图方式展示 。
由于篇幅限制,文档的详解资料太全面,细节内容太多,所以只把部分知识点截图出来粗略的介绍,每个小节点里面都有更细化的内容!
##3.为什么要用 redis 而不用 map/guava 做缓存?
缓存分为本地缓存和分布式缓存。以 Java 为例,使用自带的 map 或者 guava 实现的是本地缓存,最主要的特点是
轻量以及快速,生命周期随着 jvm 的销毁而结束,并且在多实例的情况下,每个实例都需要各自保存一份缓存,缓
存不具有一致性。
使用 redis 或 memcached 之类的称为分布式缓存,在多实例的情况下,各实例共用一份缓存数据,缓存具有一致
性。缺点是需要保持 redis 或 memcached服务的高可用,整个程序架构上较为复杂。
##4.redis 和 memcached 的区别
对于 redis 和 memcached 我总结了下面四点。现在公司一般都是用 redis 来实现缓存,而且 redis 自身也越来越
强大了!
- redis支持更丰富的数据类型(支持更复杂的应用场景):Redis不仅仅支持简单的k/v类型的数据,同时还提供
list,set,zset,hash等数据结构的存储。memcache支持简单的数据类型,String。 - Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用,而
Memecache把数据全部存在内存之中。 - 集群模式:memcached没有原生的集群模式,需要依靠客户端来实现往集群中分片写入数据;但是 redis 目前
是原生支持 cluster 模式的. - Memcached是多线程,非阻塞IO复用的网络模型;Redis使用单线程的多路 IO 复用模型。
来自网络上的一张图,这里分享给大家
##5.redis 常见数据结构以及使用场景分析
###1. String
常用命令: set,get,decr,incr,mget 等。
String数据结构是简单的key-value类型,value其实不仅可以是String,也可以是数字。 常规key-value缓存应用; 常
规计数:微博数,粉丝数等。
###2.Hash
常用命令: hget,hset,hgetall 等。
Hash 是一个 string 类型的 field 和 value 的映射表,hash 特别适合用于存储对象,后续操作的时候,你可以直接
仅仅修改这个对象中的某个字段的值。 比如我们可以Hash数据结构来存储用户信息,商品信息等等。比如下面我就用
hash 类型存放了我本人的一些信息:
k e y = J a v a U s e r 293847
v a l ue = {
“ i d ” : 1 ,
“ na m e ” :
“ S na il C li m b ” , “ age ” :
22 ,
“ l o c a t i on ” : “ W uhan , H ube i ”
}
###3.List
常用命令: lpush,rpush,lpop,rpop,lrange等
list 就是链表,Redis list 的应用场景非常多,也是Redis最重要的数据结构之一,比如微博的关注列表,粉丝列表, 消
息列表等功能都可以用Redis的 list 结构来实现。
Redis list 的实现为一个双向链表,即可以支持反向查找和遍历,更方便操作,不过带来了部分额外的内存开销。另
外可以通过 lrange 命令,就是从某个元素开始读取多少个元素,可以基于 list 实现分页查询,这个很棒的一个功
能,基于 redis 实现简单的高性能分页,可以做类似微博那种下拉不断分页的东西(一页一页的往下走),性能高。
###4.Set
常用命令: sadd,spop,smembers,sunion 等
set 对外提供的功能与list类似是一个列表的功能,特殊之处在于 set 是可以自动排重的。
当你需要存储一个列表数据,又不希望出现重复数据时,set是一个很好的选择,并且set提供了判断某个成员是否在 一
个set集合内的重要接口,这个也是list所不能提供的。可以基于 set 轻易实现交集、并集、差集的操作。
比如:在微博应用中,可以将一个用户所有的关注人存在一个集合中,将其所有粉丝存在一个集合。Redis可以非常 方
便的实现如共同关注、共同粉丝、共同喜好等功能。这个过程也就是求交集的过程,具体命令如下:
k e y 3
将交集存在 key1 内
###5.Sorted Set
常用命令: zadd,zrange,zrem,zcard等
和set相比,sorted set增加了一个权重参数score,使得集合中的元素能够按score进行有序排列。
举例: 在直播系统中,实时排行信息包含直播间在线用户列表,各种礼物排行榜,弹幕消息(可以理解为按消息维度
的消息排行榜)等信息,适合使用 Redis 中的 SortedSet 结构进行存储。
###6.redis 设置过期时间
Redis中有个设置时间过期的功能,即对存储在 redis 数据库中的值可以设置一个过期时间。作为一个缓存数据库, 这
是非常实用的。如我们一般项目中的 token 或者一些登录信息,尤其是短信验证码都是有时间限制的,按照传统的
数据库处理方式,一般都是自己判断过期,这样无疑会严重影响项目性能。
我们 set key 的时候,都可以给一个 expire time,就是过期时间,通过过期时间我们可以指定这个 key 可以存活的
时间。
如果假设你设置了一批 key 只能存活1个小时,那么接下来1小时后,redis是怎么对这批key进行删除的? 定
期删除+惰性删除。
通过名字大概就能猜出这两个删除方式的意思了。
定期删除:redis默认是每隔 100ms 就随机抽取一些设置了过期时间的key,检查其是否过期,如果过期就删除。
注意这里是随机抽取的。为什么要随机呢?你想一想假如 redis 存了几十万个 key ,每隔100ms就遍历所有的
设置过期时间的 key 的话,就会给 CPU 带来很大的负载!
惰性删除 :定期删除可能会导致很多过期 key 到了时间并没有被删除掉。所以就有了惰性删除。假如你的过期key,
靠定期删除没有被删除掉,还停留在内存里,除非你的系统去查一下那个 key,才会被redis给删除掉。这就是所谓
的惰性删除,也是够懒的哈!
s i n t e r s t o r e k e y 1 k e y 2
k e y 3
将交集存在 key1 内
但是仅仅通过设置过期时间还是有问题的。我们想一下:如果定期删除漏掉了很多过期 key,然后你也没及时去查, 也
就没走惰性删除,此时会怎么样?如果大量过期key堆积在内存里,导致redis内存块耗尽了。怎么解决这个问题 呢?
redis 内存淘汰机制。
###7.redis 内存淘汰机制(MySQL里有2000w数据,Redis中只存
###20w的数据,如何保证Redis中的数据都是热点数据?)
redis 配置文件 redis.conf 中有相关注释,我这里就不贴了,大家可以自行查阅或者通过这个网址查看:
http://download.redis.io/redis-stable/redis.conf
redis 提供 6种数据淘汰策略:
5. volatile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰
6. volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰
7. volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰
8. allkeys-lru:当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的key(这个是最常用的).
9. allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰
10. no-eviction:禁止驱逐数据,也就是说当内存不足以容纳新写入数据时,新写入操作会报错。这个应该没人使
用吧!
###8.redis 持久化机制(怎么保证 redis 挂掉之后再重启数据可以进行恢复)
很多时候我们需要持久化数据也就是将内存中的数据写入到硬盘里面,大部分原因是为了之后重用数据(比如重启机
器、机器故障之后回复数据),或者是为了防止系统故障而将数据备份到一个远程位置。
Redis不同于Memcached的很重一点就是,Redis支持持久化,而且支持两种不同的持久化操作。Redis的一种持久 化
方式叫快照( snapshotting , RDB ) , 另一种方式是只追加文件( append-only fi le,AOF ).这两种方法各有千 秋,下
面我会详细这两种持久化方法是什么,怎么用,如何选择适合自己的持久化方法。
快照(snapshotting)持久化(RDB)
Redis可以通过创建快照来获得存储在内存里面的数据在某个时间点上的副本。Redis创建快照之后,可以对快照进行备
份,可以将快照复制到其他服务器从而创建具有相同数据的服务器副本(Redis主从结构,主要用来提高Redis性 能),
还可以将快照留在原地以便重启服务器的时候使用。
快照持久化是Redis默认采用的持久化方式,在redis.conf配置文件中默认有此下配置:
###AOF(append-only file)持久化
与快照持久化相比,AOF持久化 的实时性更好,因此已成为主流的持久化方案。默认情况下Redis没有开启
AOF(append only file)方式的持久化,可以通过appendonly参数开启:
开启AOF持久化后每执行一条会更改Redis中的数据的命令,Redis就会将该命令写入硬盘中的AOF文件。AOF文件的保
存位置和RDB文件的位置相同,都是通过dir参数设置的,默认的文件名是appendonly.aof。
在Redis的配置文件中存在三种不同的 AOF 持久化方式,它们分别是:
为了兼顾数据和写入性能,用户可以考虑 appendfsync everysec选项 ,让Redis每秒同步一次AOF文件,Redis性能几
乎没受到任何影响。而且这样即使出现系统崩溃,用户最多只会丢失一秒之内产生的数据。当硬盘忙于执行写入操 作
的时候,Redis还会优雅的放慢自己的速度以便适应硬盘的最大写入速度。
Redis 4.0 对于持久化机制的优化
Redis 4.0 开始支持 RDB 和 AOF 的混合持久化(默认关闭,可以通过配置项 开启)。
如果把混合持久化打开,AOF 重写的时候就直接把 RDB 的内容写到 AOF 文件开头。这样做的好处是可以结合 RDB
和 AOF 的优点, 快速加载同时避免丢失过多的数据。当然缺点也是有的, AOF 里面的 RDB 部分是压缩格式不再是
AOF 格式,可读性较差。
补充内容:AOF 重写
AOF重写可以产生一个新的AOF文件,这个新的AOF文件和原有的AOF文件所保存的数据库状态一样,但体积更小。
AOF重写是一个有歧义的名字,该功能是通过读取数据库中的键值对来实现的,程序无须对现有AOF文件进行任伺读 入、
分析或者写入操作。
在执行 BGREWRITEAOF 命令时,Redis 服务器会维护一个 AOF 重写缓冲区,该缓冲区会在子进程创建新AOF文件
期间,记录服务器执行的所有写命令。当子进程完成创建新AOF文件的工作之后,服务器会将重写缓冲区中的所有内容
追加到新AOF文件的末尾,使得新旧两个AOF文件所保存的数据库状态一致。最后,服务器用新的AOF文件替换旧的
AOF文件,以此来完成AOF文件重写操作。
##9.redis 事务
Redis 通过 MULTI、EXEC、WATCH 等命令来实现事务(transaction)功能。事务提供了一种将多个命令请求打包,然后
一次性、按顺序地执行多个命令的机制,并且在事务执行期间,服务器不会中断事务而改去执行其他客户端的命令 请
求,它会将事务中的所有命令都执行完毕,然后才去处理其他客户端的命令请求。在传统的关系式数据库中,常常用 ACID 性质来检验事务功能的可靠性和安全性。在 Redis 中,事务总是具有原子性
(Atomicity)、一致性(Consistency)和隔离性(Isolation),并且当 Redis 运行在某种特定的持久化模式下时,事务也
具有持久性(Durability)。
##10.Redis 常见异常及解决方案
缓存使用过程当中,我们经常遇到的一些问题总结有四点:
#####10.1 缓存穿透
一般访问缓存的流程,如果缓存中存在查询的商品数据,那么直接返回。 如果缓存中不存在商品
数据, 就要访问数据库。
由于不恰当的业务功能实现,或者外部恶意攻击不断地请求某些不存在的数据内存,由于缓存中没
有保存该数据,导致所有的请求都会落到数据库上,对数据库可能带来一定的压力,甚至崩溃。
解决方案:
针对缓存穿透的情况, 简单的对策就是将不存在的数据访问结果, 也存储到缓存中,避免缓存访
问的穿透。最终不存在商品数据的访问结果也缓存下来。有效的避免缓存穿透的风险。
######10.2 缓存雪崩
当缓存重启或者大量的缓存在某一时间段失效,这样就导致大批流量直接访问数据库,对 DB 造
成压力, 从而引起 DB 故障,系统崩溃。
举例来说, 我们在准备一项抢购的促销运营活动,活动期间将带来大量的商品信息、库存等相关
信息的查询。 为了避免商品数据库的压力,将商品数据放入缓存中存储。 不巧的是,抢购活动期
间,大量的热门商品缓存同时失效过期了,导致很大的查询流量落到了数据库之上。对于数据库来
说造成很大的压力。
解决方案:
- 将商品根据品类热度分类, 购买比较多的类目商品缓存周期长一些, 购买相对冷门的类目
商品,缓存周期短一些; - 在设置商品具体的缓存生效时间的时候, 加上一个随机的区间因子, 比如说 5~10 分钟
之间来随意选择失效时间; - 提前预估 DB 能力, 如果缓存挂掉,数据库仍可以在一定程度上抗住流量的压力
这三个策略能够有效的避免短时间内,大批量的缓存失效的问题。
#####10.3 缓存预热
缓存预热就是系统上线后,将相关的缓存数据直接加载到缓存系统。这样就可以避免在用户请求的
时候,先查询数据库,然后再将数据缓存的问题。用户直接查询事先被预热的缓存数据。如图所示:
如果不进行预热, 那么 Redis 初识状态数据为空,系统上线初期,对于高并发的流量,都会访
问到数据库中, 对数据库造成流量的压力。
解决方案: - 数据量不大的时候,工程启动的时候进行加载缓存动作;
- 数据量大的时候,设置一个定时任务脚本,进行缓存的刷新;
- 数据量太大的时候,优先保证热点数据进行提前加载到缓存。
#####10.4 缓存降级
降级的情况,就是缓存失效或者缓存服务挂掉的情况下,我们也不去访问数据库。我们直接访问内
存部分数据缓存或者直接返回默认数据。
举例来说:
对于应用的首页,一般是访问量非常大的地方,首页里面往往包含了部分推荐商品的展示信息。
这些推荐商品都会放到缓存中进行存储,同时我们为了避免缓存的异常情况,对热点商品数据也
存储到了内存中。同时内存中还保留了一些默认的商品信息。如下图所示:
降级一般是有损的操作,所以尽量减少降级对于业务的影响程度。
##11.分布式环境下常见的应用场景
#####11.1 分布式锁
当多个进程不在同一个系统中,用分布式锁控制多个进程对资源的操作或者访问。 与之对应有线
程锁,进程锁。
分布式锁可以避免不同进程重复相同的工作,减少资源浪费。 同时分布式锁可以避免破坏数据正
确性的发生, 例如多个进程对同一个订单操作,可能导致订单状态错误覆盖。应用场景如下。
#####11.1.1 定时任务重复执行
随着业务的发展,业务系统势必发展为集群分布式模式。如果我们需要一个定时任务来进行订单状
态的统计。比如每 15 分钟统计一下所有未支付的订单数量。那么我们启动定时任务的时候,肯
定不能同一时刻多个业务后台服务都去执行定时任务, 这样就会带来重复计算以及业务逻辑混乱
的问题。
这时候,就需要使用分布式锁,进行资源的锁定。那么在执行定时任务的函数中,首先进行分布式
锁的获取,如果可以获取的到,那么这台机器就执行正常的业务数据统计逻辑计算。如果获取不到
则证明目前已有其他的服务进程执行这个定时任务,就不用自己操作执行了,只需要返回就行了。
如下图所示:
#####11.1.2 避免用户重复下单
分布式实现方式有很多种:
- 数据库乐观锁方式
最后
分享一套我整理的面试干货,这份文档结合了我多年的面试官经验,站在面试官的角度来告诉你,面试官提的那些问题他最想听到你给他的回答是什么,分享出来帮助那些对前途感到迷茫的朋友。
面试经验技巧篇
- 经验技巧1 如何巧妙地回答面试官的问题
- 经验技巧2 如何回答技术性的问题
- 经验技巧3 如何回答非技术性问题
- 经验技巧4 如何回答快速估算类问题
- 经验技巧5 如何回答算法设计问题
- 经验技巧6 如何回答系统设计题
- 经验技巧7 如何解决求职中的时间冲突问题
- 经验技巧8 如果面试问题曾经遇见过,是否要告知面试官
- 经验技巧9 在被企业拒绝后是否可以再申请
- 经验技巧10 如何应对自己不会回答的问题
- 经验技巧11 如何应对面试官的“激将法”语言
- 经验技巧12 如何处理与面试官持不同观点这个问题
- 经验技巧13 什么是职场暗语
面试真题篇
- 真题详解1 某知名互联网下载服务提供商软件工程师笔试题
- 真题详解2 某知名社交平台软件工程师笔试题
- 真题详解3 某知名安全软件服务提供商软件工程师笔试题
- 真题详解4 某知名互联网金融企业软件工程师笔试题
- 真题详解5 某知名搜索引擎提供商软件工程师笔试题
- 真题详解6 某初创公司软件工程师笔试题
- 真题详解7 某知名游戏软件开发公司软件工程师笔试题
- 真题详解8 某知名电子商务公司软件工程师笔试题
- 真题详解9 某顶级生活消费类网站软件工程师笔试题
- 真题详解10 某知名门户网站软件工程师笔试题
- 真题详解11 某知名互联网金融企业软件工程师笔试题
- 真题详解12 国内某知名网络设备提供商软件工程师笔试题
- 真题详解13 国内某顶级手机制造商软件工程师笔试题
- 真题详解14 某顶级大数据综合服务提供商软件工程师笔试题
- 真题详解15 某著名社交类上市公司软件工程师笔试题
- 真题详解16 某知名互联网公司软件工程师笔试题
- 真题详解17 某知名网络安全公司校园招聘技术类笔试题
- 真题详解18 某知名互联网游戏公司校园招聘运维开发岗笔试题
资料整理不易,点个关注再走吧
题
- 真题详解18 某知名互联网游戏公司校园招聘运维开发岗笔试题
[外链图片转存中…(img-tCZaRBFJ-1714879765442)]
资料整理不易,点个关注再走吧