Elasticsearch(十)搜索---搜索匹配功能①--查询所有文档和term级别查询_elasticsearch关系型数据库 搜索

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

一、前言

之前的学习我们已经了解了搜索的辅助功能,从这一章开始就是ES真正核心的功能,搜索。针对不同的数据类型,ES提供了很多搜索匹配功能:既有进行完全匹配的term搜索,也有按照范围匹配的range搜索;既有进行分词匹配的match搜索,也有按照前缀匹配的suggesr搜索。我们同样也会通过在kibana上进行DSL的搜索示例,也会给出java客户端的使用代码。本节我们将介绍两个场景:查询所有文档和term级别的查询。

二、查询所有文档

在关系型数据库中,当需要查询所有文档的数据时,对应的SQL语句为select * from table_name.在ES中是否有类似的功能呢?答案是肯定的,使用ES的match_all查询可以完成类似的功能。使用match_all查询文档时,ES不对文档进行打分计算,默认情况下给每个文档赋予1.0的得分。用户可以通过boost参数设定该分值。以下示例使用match_all查询所有文档,并设定所有文档分值为2.0:

GET /hotel/_search
{
  "\_source": ["title","city"],  //只返回title和city字段
  "query": {
    "match\_all": {   //查询所有文档
      "boost": 2     //设定所有文档的分值为2.0
    }
  }
}

ES返回的数据如下:

{
 ...
 "hits" : {
    "total" : {
      "value" : 6,  //命中6个文档
      "relation" : "eq"
    },
    "max\_score" : 2.0,
    "hits" : [
      {
        "\_index" : "hotel",
        "\_type" : "\_doc",
        "\_id" : "001",
        "\_score" : 2.0,  //最高分为2.0
        "\_source" : {    //命中的文档集合
          "city" : "北京",
          "title" : "文雅酒店"
        }
      },
      {
        "\_index" : "hotel",
        "\_type" : "\_doc",
        "\_id" : "002",
        "\_score" : 2.0,
        "\_source" : {
          "city" : "北京",
          "title" : "京盛酒店"
        }
      },
      ...
    ]
  }
}


通过返回的数据集可以看到,ES返回所有的文档,并且所有文档的得分都为2.0
在Java客户端进行查询时,可以调用QueryBuilders.matchAllQuery()方法新建一个match_all查询,并且通过boost()方法设置boost值。构建完term查询后,调用searchSourceBuilder.query()方法设置查询条件。
为方便演示,下面定义一个打印搜索结果的方法,该方法接收一个SearchRequest实例并将搜索结果设置查询条件。
由于我们的获取结果那一块儿,后面都是共同的,所以我们可以将这块儿代码独立出来:

	private List<Hotel> getQueryResult(SearchRequest searchRequest) throws IOException {
		ArrayList<Hotel> resultList = new ArrayList<>();
		SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
		RestStatus status = searchResponse.status();
		if (status != RestStatus.OK) {
			return Collections.emptyList();
		}
		SearchHits searchHits = searchResponse.getHits();
		for (SearchHit searchHit : searchHits) {
			Hotel hotelResult = new Hotel();
			hotelResult.setId(searchHit.getId());   //文档\_id
			hotelResult.setIndex(searchHit.getIndex());   //索引名称
			hotelResult.setScore(searchHit.getScore());   //文档得分
			//转换为Map
			Map<String, Object> dataMap = searchHit.getSourceAsMap();
			hotelResult.setTitle((String) dataMap.get("title"));
			hotelResult.setCity((String) dataMap.get("city"));
			String price = (String) dataMap.get("price");
			if (StrUtil.isNotBlank(price)) {
				hotelResult.setPrice(Double.valueOf(price));
			}
			resultList.add(hotelResult);
		}
		return resultList;
	}

然后我们可以在service层使用match_all查询:

public List<Hotel> matchAllQuery(HotelDocRequest hotelDocRequest) throws IOException {
		String indexName = hotelDocRequest.getIndexName();
		if (CharSequenceUtil.isBlank(indexName)) {
			throw new SearchException("索引名不能为空");
		}
		//新建搜索请求
		SearchRequest searchRequest = new SearchRequest(indexName);
		SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
		//这里我直接New MatchAllQueryBuilder,不过更推荐QueryBuilders.matchAllQuery().boost(2.0f)
		//新建match\_all查询,并设置boost值为2.0
		searchSourceBuilder.query(new MatchAllQueryBuilder().boost(2.0f));
		searchRequest.source(searchSourceBuilder);
		return getQueryResult(searchRequest);
	}

在controller层调用service:

	@PostMapping("/query/match\_all")
	public FoundationResponse<List<Hotel>> matchAllQuery(@RequestBody HotelDocRequest hotelDocRequest) {
		try {
			List<Hotel> hotelList = esQueryService.matchAllQuery(hotelDocRequest);
			if (CollUtil.isNotEmpty(hotelList)) {
				return FoundationResponse.success(hotelList);
			} else {
				return FoundationResponse.error(100,"no data");
			}
		} catch (IOException e) {
			log.warn("搜索发生异常,原因为:{}", e.getMessage());
			return FoundationResponse.error(100, e.getMessage());
		} catch (Exception e) {
			log.error("服务发生异常,原因为:{}", e.getMessage());
			return FoundationResponse.error(100, e.getMessage());
		}
	}

postman调用该接口:
在这里插入图片描述

三、term级别查询

3.1、term查询

term查询是结构化精准查询的主要查询方式,用于查询待查字段和查询值是否完全匹配,其请求形式如下:

GET /hotel/_search
{
  "query": {
    "term": {
      "${FIELD}": {     //搜索字段名称
        "value": "${VALUE}"  //搜索值
      }
    }
  }
}

其中,FIELD和VALUE分别代表字段名称和查询值,FIELD的数据类型可以是数值型,布尔型、日期型、数组型及关键字等。
例如,下面的例子是查找city为北京的酒店,DSL如下:

GET /hotel/_search
{
  "\_source": ["title","city"],     //希望返回的结果字段
  "from": 0,                        //分页
  "size": 10001,  
  "query": {
    "term": {
      "city": {    //搜索字段是city,字段类型为keyword
        "value": "北京"
      }
    }
  }
}

返回结果如下:
在这里插入图片描述
对于日期型的字段查询,需要按照该字段在mappings中定义的格式进行查询。如果格式不对,那么请求将报错:
例如我这边create_time的格式是yyyy-MM-dd HH:mm:ss
在这里插入图片描述
如果我拿其他格式进行请求:

GET /hotel/_search
{
  "\_source": ["title","city"],
  "query": {
   "term": {
     "create\_time": {


![img](https://img-blog.csdnimg.cn/img_convert/7733d27b871b05141e37600daa6282c2.png)
![img](https://img-blog.csdnimg.cn/img_convert/eec4d23f9ddc07a3c428b8aa55f0bec2.png)

**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**


**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

4)]

**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**


**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值