💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
发展对电磁辐射的直觉的一种方式是将辐射场视为围绕电荷的电场线上的涟漪的横向分量,这些涟漪是由加速产生的,以光速从电荷处传播出去。这段脚本计算并可视化了这种对任意运动的涟漪。在惯性参考系中,真空中任意运动的点电荷q的电场由莱纳特-魏克特公式给出,该公式源自麦克斯韦方程。
这个脚本提供了计算任意运动中电荷的电场的方法,并探索许多有趣的运动。对于给定的观察者位置和时间t,以及预设运动的参数描述,它使用MATLAB的零点查找函数fzero来找到相应的迟到时间。然后计算迟到位置、速度和加速度,并最终根据莱纳特-魏克特公式找到。场线是可视化电场的便利手段。电场线按定义沿着电场的方向。在观察者时间t处,场线的(矢量)微分方程为:
文档见第4部分。
📚2 运行结果
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
1) Pictures of Dynamic Electric Fields , Roger Y. Tsien, American Journal of Physics 40, 46 (1972); doi:
10.1119/1.1986445.
2) Electromagnetic radiation fields: A simple approach via field lines, Hans C. Ohanian , American Journal of
Physics 48, 170 (1980); doi: 10.1119/1.12177 View online: https://doi.org/10.1119/1.12177 .
3) A simple derivation of the electromagnetic field of an arbitrarily moving charge, Hamsa Padmanabhan,
American Journal of Physics 77, 151 (2009); doi: 10.1119/1.3020758 View online: https://doi.org/
10.1119/1.3020758
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取