1.函数是什么
函数就是一个可调用的方便写代码的东西
结构:
类型标识符 函数名(形式参数表列) {
声明部分
语句
}
例子
int max(int x,int y)
{
int z;
z=x>y?x:y;
return (z);
}
2.题目
1.判断素数
数学上把除了1和它本身,没有别的数能够整除它的自然数叫做素数(或质数)。现在由键盘输入一个自然数N(N<10^20),编程判断n是否是素数。
输入一个整数
若是素数,输出“YES”,否则输出“NO”
解题思路:for循环从2循环到n-1,如果n/i的余数是0,则不是素数,如果循环结束没有返回不是素数的话,就返回是素数。
首先一个朴素的函数
#include <bits/stdc++.h>
using namespace std;
bool s(int n){
if(n==0&&n==1){
return false;
}
for(int i=2;i<=n;i++){
if(n%i==0){
return false;
}
}
return true;
}
int main(){
int n;
cin >> n;
if(s(n)){
cout << "YES";
}else{
cout << "NO";
}
return 0;
}
显然,这个代码会超时,因为时间复杂度是O(n),10^20太大了,所以我们要优化。
我们都知道,任何一个数(0除外)都可以表示成2个数相乘,所以我们只需要枚举这个数的一半,就可以判断这个数是不是质数了。
优化代码
#include <bits/stdc++.h>
using namespace std;
bool s(long long n){
if(n==0&&n==1){
return false;
}
for(long long i=2;i*i<=n;i++){
if(n%i==0){
return false;
}
}
return true;
}
int main(){
long long n;
cin >> n;
if(s(n)){
cout << "YES";
}else{
cout << "NO";
}
return 0;
}
2.求阶乘的和
给定正整数n,求不大于n的正整数的阶乘的和(即求1!+2!+3!+...+n!)
输入有一行,包含一个正整数n(1 < n < 12)。
输出有一行:阶乘的和。
这道题我们只需要写一个阶乘的函数,然后for循环就搞定了。
#include <bits/stdc++.h>
using namespace std;
int s(int n){
long long sum=1;
for(int i=1;i<=n;i++){
sum*=i;
}
return sum;
}
int main(){
int n,cnt=0;
cin >> n;
for(int i=1;i<=n;i++){
cnt+=s(i);
}
cout << cnt;
return 0;
}
3.素数对
两个相差为2的素数称为素数对,如5和7,17和19等,要求找出给定范围内所有的素数对。
一行:包括两个数,x y 代表求 x~y 之间所有素数对。1<=x<=10000,1<=y<=10000。
x~y 之间的素数对。每队素数对输出一行,中间用单个空格隔开。若没有找到任何素数对,输出“empty”。
这题我们需要用到上面判断质数的代码,然后for循环从n枚举到m,如果i和i+2都是质数,输出i和i+2,cnt++,最后for循环外判断cnt==0,输出empty。
#include <bits/stdc++.h>
using namespace std;
bool s(long long n){
for(long long i=2;i*i<=n;i++){
if(n%i==0){
return false;
}
}
return true;
}
int main(){
long long n,m,cnt=0;
cin >> n >> m;
for(int i=n;i<=m;i++){
if(s(i)&&s(i+2)&&i!=1){
cout << i << " " << i+2 << endl;
cnt++;
}
}
if(cnt==0){
cout << "empty";
}
return 0;
}