形态学梯度支持灰度图像和彩色图像.
梯度是指图像梯度,可以简单地理解为像素的变化程度。 如果⼏个连续的像素,其像素值跨度越⼤,则梯度值越⼤。 梯度运算的运算过程:让原图的膨胀图减原图的腐蚀图。因为膨胀图⽐原图⼤,腐蚀图⽐原图⼩,利⽤腐蚀图将膨胀图掏空,就得到了原图的轮廓图。
cv2.MORPH_GRADIENT
erode
在OpenCV中,erode(腐蚀)是一种形态学操作。
它的主要作用是使图像中的目标物体“收缩”。对于二值图像,白色部分(通常代表物体)会在边缘处向内减少;对于灰度图像,较亮的区域会被缩小。
原理是通过一个指定形状和大小的结构元素(也叫核)遍历图像。当结构元素覆盖的区域内所有像素都为前景像素(如二值图像中的白色像素)时,中心像素才被保留为前景像素,否则就变为背景像素。
例如,有一个简单的圆形物体的二值图像,使用一个合适大小的方形结构元素进行腐蚀操作,圆形物体的边缘会逐渐向内缩进,好像被“腐蚀”掉了一部分一样。在代码中,使用cv2.erode()函数来实现,需要传入源图像和结构元素等参数,像cv2.erode(src_image, kernel),其中src_image是源图像,kerne