- 博客(5)
- 收藏
- 关注
原创 Datawhale AI 夏令营第三期学习笔记 —— 全球 AI 攻防挑战赛(语音生成方向)进阶
本次比赛的核心是生成 “高欺骗性” 语音(既能骗过防伪系统,又具备高自然度、相似度)。需突破 Baseline 的黑盒调用模式,深入模型底层优化,结合先进模型、数据增强、多模型融合等策略,平衡性能与鲁棒性,最终实现 “以攻促防” 的赛事目标。
2025-08-13 23:55:23
275
原创 Datawhale AI 夏令营第三期学习笔记 —— 全球 AI 攻防挑战赛(语音生成方向)
本次赛事属于语音生成类任务,要求根据给定文本和参考音频,生成高自然度、高相似度的伪造语音。核心目标是通过生成极具 “欺骗性” 的语音,暴露现有语音防伪系统的弱点,以攻促防,推动语音安全技术进步。本任务不仅是语音生成技术的比拼,更是对语音防伪系统弱点的探索。需平衡自然度、相似度与对抗性,通过高质量 “攻击样本” 推动语音安全技术进化。
2025-08-10 23:05:28
273
原创 Datawhale AI夏令营打卡笔记
做法:用编程生成简单问题,靠 “教师模型” 出答案,再用 LoRA 微调小模型。优点:数据可靠、可控性强,符合平台限制。不足:只覆盖单字段查询,复杂问题处理弱;数据多样性差,依赖教师模型,没充分利用表格结构。
2025-07-30 19:42:18
298
原创 Datawhale AI夏令营打卡笔记
本赛事的核心是构建高质量的微调数据集,通过 “编程生成问题 + 教师模型生成答案” 的模型蒸馏思路,可有效保证数据集的准确性。在此基础上,结合 LoRA 参数高效微调,能让模型在理解列车信息表、处理自然语言查询上达到优异性能。实际优化中需重点关注复杂问题的覆盖度、答案的准确性,以及模型推理速度的平衡。
2025-07-27 22:31:20
451
原创 Datawhale AI夏令营打卡笔记
今日重点解决了模型调用中的格式兼容问题和批量任务的稳定性问题,主程序的核心流程已可正常运行。通过逐步调试和错误日志分析,对 API 的调用规范有了更清晰的理解,为后续优化奠定了基础。
2025-07-13 21:06:33
298
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人