算法的复杂度

一、算法的时间复杂度

数据结构前言:`

1.1 数据结构
数据结构(Data Structure)是计算机存储、组织数据的⽅式,指相互之间存在⼀种或多种特定关系的数据元素的集合。没有⼀种单⼀的数据结构对所有⽤途都有⽤,所以我们要学各式各样的数据结构,如:线性表、树、图、哈希等
1.2 算法
算法(Algorithm):就是定义良好的计算过程,他取⼀个或⼀组的值为输⼊,并产⽣出⼀个或⼀组值作为输出。简单来说算法就是⼀系列的计算步骤,⽤来将输⼊数据转化成输出结果


1.1 如何衡量一个算法的好坏?

比如:旋转数组https://leetcode.cn/problems/rotate-array/description/

循环K次将数组所有元素向后移动⼀位

void rotate(int* nums, int numsSize, int k)
{
    while (k--)
    {
        int endnums = nums[numsSize - 1];
        for (int i = numsSize - 1; i > 0; i--)
        {
            nums[i] = nums[i - 1];
        }
        nums[0] = endnums;
    }
}

在这里插入图片描述
在这里插入图片描述
这个代码虽然运行测试通过,但是提交以后第38个测试用例没有通过
超出时间限制是因为代码的时间复杂度效率不高,
时间复杂度为两层循环嵌套 O(N^2)

而这里题目要求
在这里插入图片描述
时间复杂度为O(N^2)
把nums/k的最大限制值代入明显超出 10^5
这就属于算法效率比较低
那该如何衡量算法效率的好与坏呢? --------请看下文

1.2 复杂度的概念

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源.因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度.
时间复杂度主要
衡量⼀个算法的运⾏快慢
,⽽空间复杂度主要衡量⼀个算法运⾏所需要的额外空间
在计算机发展的早期,计算机的存储容量很⼩。所以对空间复杂度很是在乎。但是经过计算机⾏业的迅速发展,计算机的存储容量已经达到了很⾼的程度。所以我们如今已经不需要再特别关注⼀个算法的空间复杂度。

1.3时间复杂度

定义:在计算机科学中,算法的时间复杂度是⼀个函数T(N),它定量描述了该算法的运⾏时间.时间复杂度是衡量程序的时间效率,那么为什么不去计算程序的运⾏时间呢?

  1. 因为程序运⾏时间和编译环境和运⾏机器的配置都有关系,⽐如同⼀个算法程序,⽤⼀个⽼编译
    器进⾏编译和新编译器编译,在同样机器下运⾏时间不同。
  2. 同⼀个算法程序,⽤⼀个⽼低配置机器和新⾼配置机器,运⾏时间也不同。
  3. 并且时间只能程序写好后测试,不能写程序前通过理论思想计算评估

算法执行所耗费的时间,从理论上来说,是不能算出来的,只有你把程序放在机器上跑起来,才能了解.但是我们需要每个算法都要上机测试吗?这样固然可以,但是太过于麻烦所以就引出了时间复杂度的分析方式

时间复杂度的分析方式为:假设每句指令执⾏时间基本⼀样(实际中有差别,但是微乎其微),一个算法的运行时间与其中语句的执行次数成正比例;算法中的基本操作的执行次数,为算法的时间复杂度
这样也脱离了具体的编译运⾏环境。执⾏次数就可以代表程序时间效率的优劣。⽐如解决⼀个问题的算法a程序T(N) = N,算法b程序T(N) = N^2,那么算法a的效率⼀定优于算法b

// 请计算⼀下Func1中++count语句总共执⾏了多少次?
void Func1(int N)
{
    int count = 0;         
    for (int i = 0; i < N; ++i)
    {
        for (int j = 0; j < N; ++j)
        {
            ++count;                                       
        }
    }
    for (int k = 0; k < 2 * N; ++k)
    {
        ++count;
    }
    int M = 10;
    while (M--)
    {
        ++count;
    }
}

在这里插入图片描述
时间复杂度只能用来表示输入条件对时间的影响趋势
实际中我们计算时间复杂度时,我们并不一定要计算准确的执行次数,所以我们只需要计算程序能代表增长量级的大概执行次数.
复杂度的表示通常用大O的渐进表示法

1.4 大O的渐进表示法

⼤O符号(Big O notation):是⽤于描述函数渐进⾏为的数学符号
在这里插入图片描述
另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输⼊规模的最⼤运⾏次数(上界)
平均情况:任意输⼊规模的期望运⾏次数
最好情况:任意输⼊规模的最⼩运⾏次数(下界)
例如:在一个长度为N的数组中搜索一个数据x
最坏情况:N次找到
平均情况:N/2找到
最好情况:1次找到
⼤O的渐进表⽰法在实际中⼀般情况关注的是算法的上界,也就是最坏运⾏情况。
so数组中搜索数据时间复杂度为O(N);
也可参照下面的E.g 4,5,6

1.4.1 E.g 1

/ 计算Func1的时间复杂度?
void Func1(int N)
{
int count = 0;
for (int k = 0; k < 2 * N ; ++ k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
printf("%d\n", count);

Func2执⾏的基本操作次数:
T(N) = 2N + 10
时间复杂度计算的是输入条件对程序结果的影响
因此:Func1的时间复杂度为: O(N)

1.4.2 E.g 2

// 计算Func2的时间复杂度?
void Func2(int N, int M)
{
    int count = 0;
    for (int k = 0; k < M; ++k)
    {
        ++count;
    }
    for (int k = 0; k < N; ++
        k)
    {
        ++count;
    }
    printf("%d\n", count);
}

Func2执⾏的基本操作次数:
T(N) = M + N
因此:Func2的时间复杂度为: O( M + N)
如果:
M >> N, O(M)
N >> M, O(N)
M == N, O(M)或O(N)

1.4.3 E.g 3

// 计算Func3的时间复杂度?
void Func3(int N)
{
    int count = 0;
    for (int k = 0; k < 100; ++k)
    {
        ++count;
    }
    printf("%d\n", count);
}

Fun3执⾏的基本操作次数:
T(N) = 100
根据推导规则第3条得出
常数对时间增长趋势无影响(无论常熟为多少)
Func2的时间复杂度为: O(1)

1.4.4 E.g 4

//计算strchr的时间复杂度
const char* strchr(const char* str, int character)
{
    while (*str)
    {
        if (*str == character)
        {
            return str;
        }
        ++str;
    }
}

strchr执⾏的基本操作次数:
1)若要查找的字符在字符串第⼀个位置,则:
T(N) = 1
2)若要查找的字符在字符串最后的⼀个位置,
则:
T(N) = N
3)若要查找的字符在字符串中间位置,则:
T(N) = N/2
因此:strchr的时间复杂度分为:
最好情况: O(1)
最坏情况: O(N)
平均情况: O(N)

1.4.5 E.g 5

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
    assert(a);
    for (size_t end = n; end > 0; --end)
    {
        int exchange = 0;
        for (size_t i = 1; i < end; ++i)
        {
            if (a[i - 1] > a[i])
            {
                Swap(&a[i - 1], &a[i]);
                exchange = 1;
            }
        }
        if (exchange == 0)
            break;
    }
}

1)若数组有序,则:
T(N) = N
2)若数组有序且为降序,则:
T(N) = 1/2(N ∗ (N + 1))
(等差数列)
因此:BubbleSort的时间复杂度取最差情况为: O(N^2 )

1.4.6 E.g 6

int Binary_Search(int* a, int n, int x)
{
    assert(a);
    int begin = 0;
    int end = n - 1;
    while (begin <= end)
    {
        int mid = begin + ((end - begin) >> 1);
        if (a[mid < x])
            begin = mid + 1;
        else if (a[mid] > x)
            end = mid - 1;
        else
            return mid;
    }
    return -1;
}

二分查找(折半查找)
最坏情况:区间缩放到一个值时要么找到要么找不到
假设N时数组个数,x时最坏查找次数
N/2/2/2/2/2 …… /2 = 1;
折半查找多少次就除多少个2;
2^x = N;
x = log N;
所以最坏的时间复杂度为:O(log N)

1.4.7 E.g 7

//计算阶乘递归Fac的时间复杂度
long long Fac(size_t N)
{
	if (0 == N)
		return 1;
	return Fac(N - 1) * N; 
 }

调⽤⼀次Fac函数的时间复杂度为 O(1)
⽽在Fac函数中,存在n次递归调⽤Fac函数
阶乘递归的时间复杂度为: O(n)

1.4.8 E.g 8

//计算斐波那契递归Fib的时间复杂度
long long Fib(size_t N)
{
    if (N < 3)
        return 1;
    return Fib(N - 1) + Fib(N - 2);
}

O(N) = 2^N (有点太太慢了)

二、算法的空间复杂度

空间复杂度也是⼀个数学表达式,是对⼀个算法在运⾏过程中因为算法的需要额外临时开辟的空间。
空间复杂度不是程序占⽤了多少bytes的空间,因为常规情况每个对象⼤⼩差异不会很⼤,所以空间复
杂度算的是变量的个数。
空间复杂度计算规则基本跟实践复杂度类似,也使⽤⼤O渐进表⽰法。
注意:函数运⾏时所需要的栈空间(存储参数、局部变量、⼀些寄存器信息等)在编译期间已经确定好
了,因此空间复杂度主要通过函数在运⾏时候显式申请的额外空间来确定

2.1 空间复杂度示例

2.1.1 E.g 1

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
	assert(a);
	for (size_t end = n; end > 0; --end)
	{
		int exchange = 0;
		for (size_t i = 1; i < end; ++i)
		{
			if (a[i - 1] > a[i])
			{
				Swap(&a[i - 1], &a[i]);
				exchange = 1;
			}
		}
		if (exchange == 0)
			break;
	}
}

函数栈帧在编译期间已经确定好了,只需要关注函数在运⾏时额外申请的空间。
BubbleSort额外申请的空间有exchange等有限个局部变量,使⽤了常数个额外空间
根据大O推导规则
因此空间复杂度为 O(1)

2.1.2 E.g 2

 //计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
	if (N == 0)
		return 1;
	return Fac(N - 1) * N;
}

Fac递归调⽤了N次,额外开辟了N个函数栈帧,
每个栈帧使⽤了常数个空间
因此空间复杂度为: O(N)

三、复杂度算法题示例

3.1 旋转数组

https://leetcode.cn/problems/rotate-array/description/

思路1:
时间复杂度 O(n) ( 两层循环嵌套)
空间复杂度 O(1) (创建了常数个变量)
循环K次将数组所有元素向后移动⼀位(代码不通过)

void rotate(int* nums, int numsSize, int k) {
    while (k--) {
        int endnum = nums[numsSize - 1];
        for (int i = numsSize - 1; i > 0; i--) {
            nums[i] = nums[i - 1];
        }
        nums[0] = endnum;
    }
}

思路2:
(以空间换时间)
时间复杂度 O(n)
空间复杂度 O(n)

申请新数组空间,先将后k个数据放到新数组(NewArr)中,再将剩下的数据挪到新数组中
最后再拷贝到nums中

void rotate(int* nums, int numsSize, int k) {
    //申请新的数组空间
    int NewArr[numsSize];
    // 先将原数组后k个数据放到新数组中再将剩下的数据挪到新数组中
    for(int i = 0; i < numsSize; i++)
    {
        NewArr[(i + k) % numsSize] = nums[i];
    }
    //将NewArr的数据拷贝到nums
    for(int i = 0; i < numsSize; i++)
    {
       nums[i] = NewArr[i];
    }
}

在这里插入图片描述
思路三:
思路3:
时间复杂度 O(N)
空间复杂度 O(1)

在这里插入图片描述

void reverse(int* arr, int begin, int end)
{
    while(begin < end)
    {
        int tmp = arr[begin];
        arr[begin] = arr[end];
        arr[end] = tmp;

        begin++;
        end--;
    }
}
void rotate(int* nums, int numsSize, int k) {
    k %= numsSize;
    reverse(nums,0,numsSize - k - 1);
    reverse(nums,numsSize - k - 1;numsSize - 1);
    reverse(nums,0,numsSize - 1);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值