二分答案(最大值最小化,最小值最大化)

本文介绍了如何使用二分法解决最小值最大化和最大值最小化问题的实例,通过两个具体的代码展示了如何在给定条件下调整区间,以找到符合条件的最小或最大值。
摘要由CSDN通过智能技术生成

什么是二分答案呢?
这样的题从题目中可以发掘出我们要求得的答案的范围,知道答案的左边界和右边界,然后就可以套用二分法的模板了。
二分答案类的题呢,有两个标志性的词语:最小值最大化和最大值最小化。
最小值最大化类:

先看一道例题:

 题目要求输出的是相邻两头牛最大的最近距离,就是每种情况的最小值里面最大的那一个,就是二分答案里面的最小值最大化的问题。AC代码如下

#include <iostream>
#include<algorithm>
#include<cmath>
#define IOS ios::sync_with_stdio(0),cin.tie(0),cout.tie(0)
using namespace std;
long long int a[500009],b[500009];
long long int c,n,i,j;
bool check(int k){
    int ans=1,now=1;
    for(j=2;j<=n;j++){
        if(a[j]-a[now]>=k){
            ans++;
            now=j;
        }
    }
    return ans>=c;
}
int main(){
    IOS;
    cin>>n>>c;

    for(i=1;i<=n;i++){
        cin>>a[i];
    }

    sort(a+1,a+1+n);
    int l=1,r=a[n]-a[1];
    while(l<r){
        int mid=(l+r+1)>>1;
        if(check(mid)){
            l=mid;
        }else{
            r=mid-1;
        }
    }

    cout<<r<<endl;
    return 0;
}

在这篇代码里我们将区间分为两部分,[l,mid)和[mid,r],所以我们运用了上篇博客的第一种模板,在这里ans>=c作为返回条件,说明我们的K取小了,我们需要向[mid,r]区间取值,所以如果返回true,l=mid.

最大值最小化类:

看一道例题:

 题目要求输出的是最大值最小是多少,就是每种情况最大的里面最小的那一个,就是二分答案里面最大值最小化的问题。看AC代码

#include <iostream>
#define IOS ios::sync_with_stdio(0),cin.tie(0),cout.tie(0)
using namespace std;
int n,m,i,j;
int a[110000];
bool check(int k){
    int num=0,ans=0;
    for(j=1;j<=n;j++){
       if(a[j]+num<=k){
        num+=a[j];
       }else{
        num=a[j];
        ans++;
       }
    }
    return ans>=m;
}
int main(){
    IOS;
    cin>>n>>m;

     int sum=0,x=0;
    for(int i=1;i<=n;i++){
        cin>>a[i];
        x=max(x,a[i]);
        sum+=a[i];
    }

    int l=x,r=sum;
    while(l<r){
        int mid=(l+r)>>1;
        if(check(mid)){
            l=mid+1;
        }else{
            r=mid;
        }
    }

    cout<<l<<endl;
    return 0;
}

 在这篇代码里也是将区间分为两部分,即[l,mid]和(mid,r],当返回条件ans>=m为真时,说明我们的k取小了,需要在(mid,r]区间里取更大的值,所以check(mid)为真时,l=mid+1;

总结一下:

适用于最小值最大化的二分模板:

 while(l<r){
        int mid=(l+r+1)>>1;
        if(check(mid)){
            l=mid;
        }else{
            r=mid-1;
        }
    }

适用于最大值最小化的二分模板:

 while(l<r){
        int mid=(l+r)>>1;
        if(check(mid)){
            l=mid+1;
        }else{
            r=mid;
        }
    }

 

  • 20
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
"最大化最小值"或"最小化最大值"问题的函数曲线一般是非常复杂的,因为目标函数可以是任意的函数。但是,我们可以通过一个简单的例子来理解这类问题的函数曲线。 假设我们要在一个一维数组中找到一个最大的数 x,使得数组中所有数都不小于 x。我们可以将这个问题转化为一个函数 f(x) 的形式,其中 f(x) 表示 "数组中所有数都不小于 x" 这个条件是否成立。具体地,如果数组中存在一个数小于 x,则 f(x) 为 false,否则 f(x) 为 true。 这个函数的曲线是一个阶梯状的函数,如下图所示: ``` | | | | | | | | |___|___|___|___ x1 x2 x3 x4 ``` 其中,每个竖直的线段表示一个数组元素,x1、x2、x3、x4 分别表示四个元素的值,每个水平的线段表示函数值为 true 的区间。例如,当 x 取值在 [x3, x4] 区间内时,f(x) 的值都为 true,因为数组中所有元素的值都不小于 x3。 在这个例子中,我们要找到的最大的 x,就是最后一个函数值为 true 的点所对应的 x 值,即 x4。这个问题可以通过二分查找法解决,每次取中间值,判断中间值是否满足条件,然后不断缩小搜索区间,最终找到最大的 x 值。 类似的,对于"最小化最大值"问题,我们可以构造一个类似的函数,表示所有满足条件的最大值是否小于等于 x。这个函数的曲线也是一个阶梯状的函数,但是是逆向的,即从右上方向左下方延伸。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值