自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(9)
  • 收藏
  • 关注

原创 启发式算法——模拟退火算法

模拟退火算法是一种全局优化算法,在高温下会有一定概率接受较差的解,从而增大跳出局部最优解的可能,进而收敛到寻找全局最优解。但是算法的缺点也是很明显的,就是参数的选择对算法性能有很大影响,如初始温度、冷却速度等参数,而这些参数往往需要根据具体问题进行调整,换句话说就是算法的成功实施需要对问题有深入的理解,需要结合所要解决的问题,来应用模拟退火算法,可能需要对模拟退火算法进行一些修改,同时对算法参数进行精细的调整。降温策略是模拟退火算法的关键部分,它决定了算法的收敛速度和最终解的质量。时,接受新解的概率随着。

2024-05-25 15:33:47 2226

原创 高中物理之电学基础——电场能的性质

正电荷周围电势都为正负电荷周围电势都为负电势沿着电场线降低电势的高低看远近接地的话就是默认它是零势点。

2024-05-24 21:48:45 480

原创 深度学习之卷积神经网络(2)

上一节中笔者介绍了卷积神经网络模型的一些前提知识,在这里我将介绍卷积神经网络的核心部分,卷积层和池化层。

2024-05-22 23:18:00 1916 2

原创 高中物理之电学基础——电场的力学性质

关键是受力分析时需要注意的点就是算库伦力的时候,带电量的正负,它的符号是不用带进公式里的。因为正负号子表示带电量的±,不表示方向。力是矢量,它的正负号是表示方向的。

2024-05-22 15:09:48 508

原创 深度学习之卷积神经网络(1)

在深度学习中,卷积神经网络(CNN)中的卷积操作本质上是交叉相关,因为它们使用可学习的模板(或称为滤波器、权重)在输入图像上执行交叉相关。因此,在实际应用中,经常使用一些优化技术,如使用小尺寸的模板、利用图像的平移不变性、或者使用快速傅里叶变换(FFT)来加速计算。边缘是图像中物体和物体边界的表示,它们对于图像分割、特征提取、图像识别和许多其他视觉任务至关重要。计算机视觉中的一种基础技术,用于从图像中识别和定位边缘,即图像中亮度变化显著的区域。交叉相关与卷积类似,但有一个关键的区别:在卷积操作中,模板。

2024-05-21 22:12:31 1131 1

原创 高中物理之电学基础——静电场的描述

一个质子或一个电子的带电量的大小,为1.6×10−19c注意单位,库仑为c。

2024-05-21 21:36:45 716 1

原创 深度学习之神经网络(2)

代价函数(Cost Function)或损失函数(Loss Function)是深度学习模型中用于衡量模型预测值与真实值之间差异的函数,是深度学习模型中重要的一部分。它由一个或多个层组成,每一层都包含多个神经元,并且各层之间是前向连接的,即信息只能从前一层流向后一层,不会形成回路。一种训练神经网络的算法,通过计算损失函数关于网络参数的梯度,并利用这些梯度来更新网络的权重。一种优化算法,用于最小化损失函数,通过调整网络的权重来减少预测误差。用于评估神经网络的预测与实际值之间的差异,用于指导网络的训练过程。

2024-05-20 22:53:42 1779

原创 深度学习之神经网络(1)

一种受人脑结构启发的计算模型,由相互连接的节点(神经元)组成,能够处理和解释数据。这里的神经网络,具体而言应该指的是人工神经网络(Artificial Neural Networks,简称ANNs),而非生物学上的神经网络。其实人工神经网络是本身就是受生物神经网络启发的数学模型,用于模拟大脑处理信息的方式。但是现代神经网络模型在结构和功能上已经高度抽象化,虽然仍然比生物神经系统的复杂性,但是人工神经网络模型随着时间发展,不可解释性在进一步增强。

2024-05-19 13:14:53 569 1

原创 深度学习入门

阶跃函数的图像是一条从0突变到1的阶梯,没有平滑的过渡。但是,由于阶跃函数在0点处不连续,导致其在反向传播中无法计算梯度,因此在深度学习中较少使用,而更常见的选择是连续可微的激活函数,如sigmoid、ReLU等。神经元的输入是来自上一层神经元输出的加权和,经过一个激活函数的非线性转换后,传递到下一层神经元。通过调整隐藏层的大小和数量,以及选择合适的激活函数,多层感知机可以适应各种复杂的数据模式和任务。感知机接收多个输入,每个输入都有一个对应的权重,然后将输入和权重的乘积相加,并加上偏差(也称为阈值)。

2024-05-18 22:18:36 798

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除