- 博客(8)
- 收藏
- 关注
原创 BSGS算法 求解高次同余方程
BSGS算法求解高次同余方程 摘要:BSGS算法用于求解形如a^x≡b(mod p)的高次同余方程,其中a和p互质。该算法通过分块思想将时间复杂度优化为O(√p)。具体步骤包括:1)将x表示为x=im-j;2)枚举j计算ba^j存入哈希表;3)枚举i计算(a^m)^i在哈希表中查找匹配。算法要求a与p互质以保证解的正确性,并给出了C++实现示例。BSGS算法通过将问题分解为"小步"和"大步"两部分,显著提高了求解效率。
2025-08-31 09:28:43
621
原创 扩展中国剩余定理
扩展中国剩余定理(EXCRT)用于求解模数不一定互质的同余方程组。与CRT不同,EXCRT通过逐步合并方程来求解:首先解前两个方程,得到通解形式后合并为一个新方程,再与后续方程继续合并。关键步骤是使用扩展欧几里得算法判断解的存在性(当且仅当gcd(m1,m2)|(r2-r1)时存在解),并计算特解。最终合并所有方程后得到最小非负解。EXCRT克服了CRT要求模数两两互质的限制,具有更广泛的适用性。
2025-08-27 23:25:42
748
原创 中国剩余定理(Chinese Remainder Theorem, CRT)
中国剩余定理(CRT)是古代中国《孙子算经》中提出的数论方法,用于求解线性同余方程组。其核心步骤包括:计算模数乘积M,求出各方程的系数c_i及其模逆元,最后组合得到解x。该定理要求模数两两互质,通过构造性证明验证了解的正确性。文中给出了具体示例和C++实现代码,展示了如何利用扩展欧几里得算法求解模逆元并计算最终解。这一方法在密码学、计算机科学等领域有广泛应用。
2025-08-21 16:27:25
1098
2
原创 剩余系 欧拉定理 扩展欧拉定理
本文介绍了剩余类、完全剩余系与简化剩余系的定义及数学性质,重点阐述了欧拉定理及其扩展形式。欧拉定理指出,当$\gcd(a,m)=1$时,$a^{\varphi(m)}\equiv 1 \pmod m$;费马小定理是其特例。扩展欧拉定理则允许对指数降幂处理,适用于大指数模运算。文章还通过示例说明定理应用,并提供计算欧拉函数$\varphi(m)$的算法实现思路,为求解$a^b \bmod m$问题提供了完整的理论基础和实用方法。
2025-08-21 11:44:56
456
原创 扩展欧几里得算法(Extended Euclidean Algorithm)求解不定方程 代码实现
再回代即可得到当前层的。根据裴蜀定理,存在整数。
2025-07-13 14:37:33
279
原创 树状数组的元素修改和查询
将区间[l, r]的每一个元素都加上k, 运用差分的思想相当于add(l, k), add(r + 1, -k)。区间修改同上面一样运用差分的思想,运用差分树状数组表示的是差分数组,如何用差分数组进行区间查询呢?而单点修改的区间查询[l, r]的区间值表示为get_sum(r) - getsum(l - 1);单点修改是对一个点的数值进行修改,但是t1树状数组中的每个元素的值存的是前缀和,和前缀和的思维一样,我们运用差分的思想。而求出某个数的值则转化为这个数原始的值加上这个数的变化。
2024-07-08 18:10:36
619
4
数学建模自学者资料,适用与于数学建模刚入门的小伙伴参考和学习
2024-07-08
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅