Caputo分数阶微分方程 - 快速H2N插值逼近及其Matlab程序实现

162 篇文章 52 订阅 ¥59.90 ¥99.00
本文介绍了Caputo分数阶微分方程的快速H2N插值方法,提供了Matlab程序实现,用于近似求解分数阶微分方程,具有广泛的应用潜力。
摘要由CSDN通过智能技术生成

Caputo分数阶微分方程 - 快速H2N插值逼近及其Matlab程序实现

分数阶微分方程是一种在数学和物理领域中广泛应用的数学工具,它能够描述非整数阶导数的行为。近年来,Caputo分数阶导数引起了研究者的广泛兴趣,因为它具有良好的数学性质和实际应用的潜力。在本文中,我们将介绍Caputo分数阶微分方程的快速H2N插值逼近方法,并提供相应的Matlab程序实现。

首先,让我们回顾一下Caputo分数阶导数的定义。对于一个实数α(0 < α ≤ 1)和一个函数f(t),Caputo分数阶导数定义如下:

D^αf(t) = 1/Γ(1-α) ∫[0, t] (t-τ)^(-α) f’(τ) dτ

其中,Γ(·)表示Gamma函数,f’(t)表示函数f(t)的一阶导数,积分区间是从0到t。

现在,我们将介绍如何使用H2N插值方法来近似解Caputo分数阶微分方程。H2N插值是一种基于Hermite插值和Newton插值的插值方法,它可以在给定的节点上近似函数及其导数的值。

以下是Matlab程序的实现:

function y = CaputoFrac
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值