基于BP神经网络的电力系统短期负荷预测(附带Matlab代码)

184 篇文章 58 订阅 ¥59.90 ¥99.00
本文介绍了使用BP神经网络进行电力系统短期负荷预测的方法,详细阐述了数据准备、网络训练及Matlab代码实现,强调了实际应用中参数调整和模型优化的重要性。
摘要由CSDN通过智能技术生成

基于BP神经网络的电力系统短期负荷预测(附带Matlab代码)

电力系统负荷预测是电力行业中一项重要的任务,它对于电力供应的可靠性和经济性具有重要的影响。BP神经网络是一种常用的人工神经网络模型,可以用于电力系统负荷预测。本文将介绍基于BP神经网络的电力系统短期负荷预测的方法,并提供相应的Matlab代码。

首先,我们需要准备训练数据集。训练数据集应包含历史负荷数据和对应的时间信息。假设我们有N个历史数据样本,每个样本包含m个特征,其中包括过去时间段的负荷数据和时间信息。我们将这些特征表示为x1, x2, …, xm。对应的真实负荷值表示为y。我们将数据集划分为训练集和测试集,通常可以将80%的数据样本用于训练,20%的数据样本用于测试。

下面是用于训练BP神经网络的Matlab代码:

% 设置神经网络的参数
hiddenLayerSize = 10; % 隐藏层神经元数量
net = 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值