基于BP神经网络的电力系统短期负荷预测(附带Matlab代码)
电力系统负荷预测是电力行业中一项重要的任务,它对于电力供应的可靠性和经济性具有重要的影响。BP神经网络是一种常用的人工神经网络模型,可以用于电力系统负荷预测。本文将介绍基于BP神经网络的电力系统短期负荷预测的方法,并提供相应的Matlab代码。
首先,我们需要准备训练数据集。训练数据集应包含历史负荷数据和对应的时间信息。假设我们有N个历史数据样本,每个样本包含m个特征,其中包括过去时间段的负荷数据和时间信息。我们将这些特征表示为x1, x2, …, xm。对应的真实负荷值表示为y。我们将数据集划分为训练集和测试集,通常可以将80%的数据样本用于训练,20%的数据样本用于测试。
下面是用于训练BP神经网络的Matlab代码:
% 设置神经网络的参数
hiddenLayerSize = 10; % 隐藏层神经元数量
net =