SSR和SSE指标在R语言中的应用
在统计学和回归分析中,残差平方和(Sum of Squares Residuals,简称SSR)和误差平方和(Sum of Squares Error,简称SSE)是常用的评估指标。它们用于衡量回归模型的拟合优度和预测误差。
SSR(Sum of Squares Residuals)
SSR是指回归模型中观测值与回归线(或平面)之间的差异的平方和。它表示了模型无法解释的部分,即残差的平方和。在R语言中,可以使用以下代码计算SSR:
# 创建一个示例数据集
x <- c(1, 2, 3, 4, 5)
y <- c(2, 4, 6, 8, 10)
# 拟合线性回归模型
model <- lm(y ~ x)
# 计算SSR
residuals <- residuals(model)
SSR <- sum(residuals^2)
在上述代码中,我们首先创建了一个简单的数据集,其中x是自变量,y是因变量。然后,我们使用lm
函数拟合了一个线性回归模型,并使用residuals
函数计算了残差。最后,通过将残差的平方求和,我们得到了SSR的值。
SSE(Sum of Squares E