SSR和SSE指标在R语言中的应用

90 篇文章 ¥59.90 ¥99.00
SSR和SSE是统计学和回归分析中的关键指标,用于评估模型拟合优度和预测误差。在R语言中,可以通过计算残差平方和与误差平方和来获取这些值,并进一步计算决定系数R-squared。较小的SSR和SSE值表明模型预测效果更好。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SSR和SSE指标在R语言中的应用

在统计学和回归分析中,残差平方和(Sum of Squares Residuals,简称SSR)和误差平方和(Sum of Squares Error,简称SSE)是常用的评估指标。它们用于衡量回归模型的拟合优度和预测误差。

SSR(Sum of Squares Residuals)
SSR是指回归模型中观测值与回归线(或平面)之间的差异的平方和。它表示了模型无法解释的部分,即残差的平方和。在R语言中,可以使用以下代码计算SSR:

# 创建一个示例数据集
x <- c(1, 2, 3, 4, 5)
y <- c(2, 4, 6, 8, 10)

# 拟合线性回归模型
model <- lm(y ~ x)

# 计算SSR
residuals <- residuals(model)
SSR <- sum(residuals^2)

在上述代码中,我们首先创建了一个简单的数据集,其中x是自变量,y是因变量。然后,我们使用lm函数拟合了一个线性回归模型,并使用residuals函数计算了残差。最后,通过将残差的平方求和,我们得到了SSR的值。

SSE(Sum of Squares E

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值