随机森林是一种集成学习方法,它通过构建多个决策树并对其结果进行集成来进行分类或回归任务。在遥感影像分类中,随机森林通常表现出色,并且对于处理大规模影像数据效果显著。
首先,我们需要准备相应的数据集。Landsat影像通常包含多个波段的数据,每个波段代表不同的光谱信息。我们需要将这些波段数据作为输入特征,并将每个像素的类别作为标签,以训练和评估随机森林分类器。
下面是一个示例代码来完成这个任务:
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion_matrix, accuracy_score