K-means聚类算法在数据分析和机器学习领域中被广泛应用

159 篇文章 34 订阅 ¥59.90 ¥99.00
K-means算法是一种无监督学习的聚类方法,常用于数据分析和机器学习。它通过迭代找到数据点的最优簇分配,使得同一簇内的数据相似度高,不同簇间相似度低。文章介绍了K-means的基本思想,核心步骤包括初始化质心、分配数据点、更新质心,并提供了MATLAB实现代码示例,帮助读者理解和应用K-means算法。
摘要由CSDN通过智能技术生成

K-means聚类算法在数据分析和机器学习领域中被广泛应用。它是一种无监督学习算法,用于将一组数据点分成不同的簇,使得同一簇内的数据点相似度较高,而不同簇之间的相似度较低。本文将介绍K-means聚类算法的多种实现方法,并提供相应的MATLAB代码。

K-means算法的基本思想是通过迭代的方式,将数据点划分为K个簇。每个簇都由一个代表点,即质心(centroid)来表示。算法的核心步骤包括初始化质心、计算数据点与质心之间的距离、将数据点分配到最近的质心所在的簇,并更新质心的位置。这些步骤将重复执行,直到质心不再变化或达到预定的迭代次数。

下面是一种基本的K-means算法的MATLAB实现代码:

function [centroids, clusterAssignments] = kmeansAlgorithm(data
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值