K-means聚类算法在数据分析和机器学习领域中被广泛应用。它是一种无监督学习算法,用于将一组数据点分成不同的簇,使得同一簇内的数据点相似度较高,而不同簇之间的相似度较低。本文将介绍K-means聚类算法的多种实现方法,并提供相应的MATLAB代码。
K-means算法的基本思想是通过迭代的方式,将数据点划分为K个簇。每个簇都由一个代表点,即质心(centroid)来表示。算法的核心步骤包括初始化质心、计算数据点与质心之间的距离、将数据点分配到最近的质心所在的簇,并更新质心的位置。这些步骤将重复执行,直到质心不再变化或达到预定的迭代次数。
下面是一种基本的K-means算法的MATLAB实现代码:
function [centroids, clusterAssignments] = kmeansAlgorithm(data