经典蓝桥题目-------欧拉函数的应用

输入样例:

3
4 9
5 10
42 9999999967

输出样例:

6
1
9999999966

分析:

设  gcd(a,m) = d,则 d|a,d|m

而  gcd(a,m) = gcd(a+x,m) 则有 d|x

根据题目有 0<=x<m

同样的有 0<= x' < m'     (x',m'是同时除以d的值)

于是我们发现只要求m'的欧拉函数即可

不会欧拉函数的可以看我这篇博客,写的很详细

欧拉函数的定义与应用

代码演示:

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;

typedef long long LL;

// 求最大公约数
LL gcd(LL a,LL b)
{
    return b?gcd(b,a%b):a;
}

// 求欧啦函数
LL calc_primes(LL n)
{
    LL res = n;
    for(LL i=2;i<=n/i;i++)
    {
        if(n%i==0)
        {
            res = res/i*(i-1);
            while(n%i==0) n /= i;
        }
    }
    if(n>1) res = res/n*(n-1);
    return res;
}

int main(void)
{
    int t;cin >> t;
    while(t--)
    {
        LL l,r;
        cin >> l >> r;
        LL d = gcd(l,r);
        cout << calc_primes(r/d) << endl;
    }
   
    return 0;
}

感谢查看!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>