算法日记32:埃式筛、gcd和lcm、快速幂、乘法逆元

一、埃式筛(计算质数)

1.1、概念

1.1.1、在传统的计算质数中,我们采用单点判断,即判断(2~sqrt(n))是否存在不合法元素,若存在则判否,否则判是

在这里插入图片描述

1.1.2、假设,此时我们需要求1~1000的所有质数,此方法的时间复杂度就会变成O(n*sqrt(n)),这显然太过冗余了

在这里插入图片描述

  • 因此,我们可以使用埃式筛

1.1.3、现在,求1~20中的所有质数,我们就可以:

  • 1)首先将0、1排除:

  • 2)创建从2到n的连续整数列表,[2,3,4,…,n];

  • 3)初始化 p = 2,因为2是最小的质数;

  • 4)枚举所有p的倍数(2p,3p,4p,…),标记为非质数(合数);

  • 5)找到下一个 没有标记 且 大于p 的数。如果没有,结束运算;如果有,将该值赋予p,重复步骤4;

  • 6)运算结束后,剩下所有未标记的数都是找到的质数。
    在这里插入图片描述

  • 此时,2是第一个质数,因此把2的倍数全部设置为1(vis[j]=1)将其全部筛出
    在这里插入图片描述

  • 接下来,发现3为0,表示3是一个质数,因此我们把3的倍数也给筛掉
    在这里插入图片描述

  • 因此,我们可以发现只要其没有被其他数字筛掉,那么他就一定是质数

1.2、总结:

在这里插入图片描述

ll vis[N];//用来判断一个数是否被筛掉了,0->没被筛掉,1->筛掉
void solve()
{
    ll n;cin>>n;
    vis[0]=vis[1]=1;
    for(ll i=2;i<=n;i++)//从2开始筛值
    {
        //从i*2开始,每次+i,当枚举到还没筛掉的数,筛掉
        for(ll j=i*i;j<=n;j+=i) 
        {
            if(vis[i]==0) vis[j]=1;
        }
    }
    for(ll i=2;i<=n;i++) if(vis[i]==0) cout<<i<<' '; 
}

2、最大公约数(gcd)和最小公倍数(lcm)

2.1、gcd求法

2.1.1、如何求解两个数(a,b)的最大公约数(gcd)?

  • 使用辗转相除法
    • 首先 ,我们假设(a>b),通过数学公式不难得出:
    • 1)gcd(a,b)=gcd(a%b,b),比如gcd(18,6)=gcd(0,6)
    • 2)if(b==0)那么意味着此时的a即为最小公倍数
  • 因此,代码可以写成
ll gcd(ll a,ll b)	//只需记住,无论何时:a>b
{
    return b==0 ? a : gcd(b,a%b);
}

在这里插入图片描述

2.2、lcm求法

2.2.1、如何求解两个数(a,b)的最小公倍数(lcm)?

  • 只需记住一个公式即可:
a*b=gcd(a,b)*lcm(a*b);

3、快速幂

3.1、概念:求解ab

  • 1、当b为奇数时候,拆出一个a,此时,b就变成了一个偶数
  • 2、当b为一个偶数的时候,就拆出其次方项 b-->2/b
    在这里插入图片描述

3.1.1、代码实现

//快速幂
ll qmi(ll a,ll b,ll c)  //a ^ b % c
{
    int res=1;
    while(b)
    {
        if(b&1) res=res*a%c,b--;//当b是奇数时,拆出一个a,使得 b 变成偶数
        else a=a*a%c,b>>=1;	//此时b为偶数,拆出一个a*a,等待下次为奇数再计算答案
    }
    return res;
}

四、乘法逆元

4.1、概念

  • 在写题目的时候,假设我们需要表达a/b,是不好表达的,只能用浮点数来表示,因此我们就采用乘法逆元(类似于倒数 % p)来表示
    在这里插入图片描述

4.2、那么,如何来求逆元呢?

  • 我们可以使用费马小定理来求解
    在这里插入图片描述

4.3、乘法逆元例题

在这里插入图片描述

4.3.1、对于例题,我们可以对这个分式进行分解

在这里插入图片描述

  • 因此,我们可以使用逆元来表示分数即可
#include<bits/stdc++.h>
using namespace std;

typedef long long ll;
const int N = 2e5 + 7;
ll p=998244353;

ll qmi(ll a,ll b)	//快速幂
{
    ll res=1;
    while(b)
    {
        if(b&1) res=res*a%p,b--;
        a=a*a%p,b>>=1;
    }
    return res%p;
}

ll inv(int x)	//求解x的逆元
{
    return qmi(x,p-2)%p;
}

void solve()
{
    ll a,b,c,q;cin>>a>>b>>c>>q;
	while(q--)
	{
		ll x;cin>>x;
		cout<<(a*x%p+b)%p*inv(c*x%p)%p<<'\n'; 
	}
}

int main()
{
    ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    int _ = 1; cin>>_;
    while (_--) solve();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值