使用R语言实现波士顿房价预测的多层神经网络
神经网络是一种强大的机器学习算法,可以用于解决各种问题,包括预测房价。在本文中,我将使用R语言实现一个多层神经网络来预测波士顿的房价。我们将使用波士顿房价数据集,该数据集包含了506个样本和13个特征,如犯罪率、住宅平均房间数等。
首先,我们需要加载所需的R包。我们将使用neuralnet
包来构建和训练神经网络,并使用caret
包来对模型进行评估和验证。
# 加载所需的包
library(neuralnet)
library(caret)
接下来,我们需要加载波士顿房价数据集。你可以在网上找到该数据集并将其保存为一个CSV文件,然后使用R的read.csv
函数加载它。
# 加载数据集
data <- read.csv("boston_housing.csv")
数据集加载完成后,我们需要对数据进行预处理。首先,我们将数据集分为训练集和测试集。我们将使用70%的数据作为训练集,30%的数据作为测试集。
# 设置随机种子以确保可重复性
set.seed(123)
# 划分数据集为训练集和测试集
trainIndex &l