使用R语言实现波士顿房价预测的多层神经网络

40 篇文章 ¥59.90 ¥99.00
本文介绍了使用R语言构建多层神经网络预测波士顿房价的过程,包括数据加载、预处理、模型训练、评估和代码展示。通过神经网络模型,可以对房价进行预测,评估指标为均方根误差。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用R语言实现波士顿房价预测的多层神经网络

神经网络是一种强大的机器学习算法,可以用于解决各种问题,包括预测房价。在本文中,我将使用R语言实现一个多层神经网络来预测波士顿的房价。我们将使用波士顿房价数据集,该数据集包含了506个样本和13个特征,如犯罪率、住宅平均房间数等。

首先,我们需要加载所需的R包。我们将使用neuralnet包来构建和训练神经网络,并使用caret包来对模型进行评估和验证。

# 加载所需的包
library(neuralnet)
library(caret)

接下来,我们需要加载波士顿房价数据集。你可以在网上找到该数据集并将其保存为一个CSV文件,然后使用R的read.csv函数加载它。

# 加载数据集
data <- read.csv("boston_housing.csv")

数据集加载完成后,我们需要对数据进行预处理。首先,我们将数据集分为训练集和测试集。我们将使用70%的数据作为训练集,30%的数据作为测试集。

# 设置随机种子以确保可重复性
set.seed(123)

# 划分数据集为训练集和测试集
trainIndex &l
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值