能源行业大数据应用案例解析
随着科技的不断进步和信息技术的快速发展,大数据在各个行业中的应用越来越广泛。能源行业也不例外,大数据技术的应用在能源领域带来了许多创新和改进。本文将介绍几个能源行业中使用大数据的案例,并提供相应的源代码示例。
- 能源需求预测
能源需求预测是能源企业重要的决策依据之一。通过分析历史数据和相关指标,可以预测未来的能源需求,帮助企业进行合理的生产和供应安排。以下是一个简单的Python代码示例,演示如何使用线性回归模型进行能源需求预测:
import numpy as np
from sklearn.linear_model import LinearRegression
# 历史数据
years = np.array(